CATALOGUE OF GENE SYMBOLS FOR WHEAT: 2013-2014 SUPPLEMENT

R.A. McIntosh¹, J. Dubcovsky², W.J. Rogers³, C. Morris⁴, R. Appels⁵ and X.C. Xia⁶

¹The University of Sydney, Plant Breeding Institute Cobbitty, PMB 4011, Narellen, N.S.W. 2570, Australia. robert.mcintosh@sydney.edu.au

²Department of Agronomy and Range Science, University of California, Davis, CA 95616, U.S.A. jdubcovsky@ucdavis.edu

³Catedra de Genetica y Fitotecnia, DCBA y B, Facultad de Agronomia, CIISAS, CIC-BIOLAB AZUL, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina. Av. Rep. Italia 780, CC47 73 Azul, Provincia de Buenos Aires, Argentina. CONICET-INBA-CEBB-MdP. rogers@faa.unicen.edu.ar

⁴USDA-ARS Western Wheat Laboratory, Pullman, WA 99164-6394, U.S.A. morris@wsu.edu

⁵Molecular Plant Breeding Research Centre, Biological Sciences, Murdoch University and Department of Agriculture, Locked Bag 4, Bentley Delivery Centre W.A. 6983, Australia. rappels@agric.wa.gov.au

⁶Institute of Crop Science, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St, Beijing 100081, China. xiaxianchun@caas.cn

The most recent version of the Catalogue, compiled for the 12th International Wheat Genetics Symposium held in Yokohama, Japan, is available on the Komugi and GrainGenes websites.

Laboratory Designators

Wl

cdl	Research Leader
	USDA-ARS
	Cereal Disease Laboratory
	1551 Lindig Street
	Saint Paul, MN 55108
	USA
ml	Li, W.L.
	Department of Biology and Microbiology
	South Dakota State University
	Rotunda Lane
	252 North Plain Biostress Building
	Brookings, SD 57007-2142
	USA

Morphological and Physiological Traits

At the end of the introductory paragraph add:

A summary of trait genotypes and markers used in the Canadian wheat breeding program is given in {11044}.

1. Gross Morphology: Spike characteristics

5. Anthocyanin Pigmentation

5.3. Red/purple coleoptiles.

After the introductory sentence add:

In chromosome substitution lines of wild emmer to common wheat both the 7AS and 7AL derivatives had red coleoptiles, placing *Rc-A1* in the centromeric region {10974}.

5.5. Purple grain/pericarp

Continue the first paragraph:

A purple line PC was obtained from a cross of non-purple Line 821 (a 7S(7B) substitution from *Ae. speltoides*) and Line 102/00, a chromosome 2A introgression from *T. timopheevii* {10946}. Purple grained accessions are unknown in both *Ae. speltoides* and *T. timopheevii*.

8. Blue Aleurone

NEW Brittle Culm

Three independent mutants with brittle tissues were obtained as EMS-induced mutants in *T. monococcum* accession PAU 14087 {11002}. The mutations likely affected cellulose synthesis and involved all tissues {11002}.

<i>brc1</i> {11002}.		1AL {11002}.	dv:	T. monococcum mutant brc1 {11002}.	
	ma:	Xwmc470-1A-3.	9 cM –	<i>Brc1</i> − 2.1 cM − <i>Xgwm135-1A</i> {11002}.	
brc2 {11	1002}.	3AL {11002}.	dv:	T. monococcum mutant brc2 {11002}.	
ma: $Xcfa2170-3A-2.9 \text{ cM} - Brc2-0.8 \text{ cM} - Xcfd62-3A \{11002\}.$			$Brc2 - 0.8 \text{ cM} - Xcfd62-3A \{11002\}.$		
<i>brc3</i> {11002}.		6AS {11002}. dv:		T. monococcum mutant brc3 {11002}.	
	ma: $Xbarc37-6A - 1.9 \text{ cM} - brc3 - 10.3 \text{ cM} - Xbarc113-6A \{11002\}.$			<i>brc3</i> – 10.3 cM – <i>Xbarc113-6A</i> {11002}.	

9. Brittle Rachis

After the introductory sentence add:

In chromosome substitution lines of wild emmer to common wheat, the 3AS derivative was more brittle than the 3BS derivative {10974}.

11. Cadmium Uptake

11.1. Low cadmium uptake

Cdu1.	tv:	Brigade {11044}; CDC Desire {11044}; CDC Verona {11044}; CDC
		Vivid {11044}; Enterprise {11044}; Eurostar {11044}; Napoleon
		{11044}; Transend {11044}; Strongfield {11044}.

13. Cleistogamous Flowering

Delete 'in durums' from the heading and begin the section with the following: Cleisogamy in barley is controlled by the *Cly1* gene, which encodes an AP2 protein. The Cly1 and *cly1* alleles differ by a single nucleotide within the miR172 binding site. Three wheat homologues of *Cly1*, *viz. TaAP-2A*, *TaAp-2B* and *TaAp-2D* were located in the terminal bins of chromosomes 2AL, 2BL, and 2DL, respectively in Chinese Spring and Shinchunaga {11013}.

Cleistogamous flowering in durums

Present data.

16. Crossability with Rye and Hordeum and Aegilops spp.

16.1. Common wheat

Kr1.	ma:	Mapped to a 2.0 cM region flanked by Xw5145-5B and
		CA1500122/Xw9340-5B {10922}.

A second gene in 5BL distal to the Ph1 locus and flanked by Oshypl and Os09g36440, but including Xgwm371-5B, affected the temperature sensitivity of seed-set in Kr1 genotypes in wide crosses {10922}.

17. Dormancy (Seed) 17.1. Vivipary

	1	1	T
Vp-A1g [[11047}].	<i>Vp-1Ab</i> {11047}.	v:	Kayansona {11047}; Sonalika
			{11047}; Yaqui 50 {11047}; Yecora
			Rojo 76 {11047}.
		c:	GenBank Gu385899 {11047}.
<i>Vp-A1h</i> [{11047}].	<i>Vp-1Ad</i> {11047}.	v:	Attila {11047}; Glenlea {11047};
			Tanori F71 {11047}.
		c:	GenBank Gu385901 {11047}.
Vp-A1 i [{11047}].	<i>Vp-1Af</i> {11047}.	v:	Debeira {11047}; Kancahn {11047};
			Rayon F89 {11047}.
		c:	GenBank Gu385903 {11047}.

<i>Vp-1Be</i> {10998}.	v:	Fulingkemai {10999}; Hongmangchun {10998}; Wangshuibai {10999}.
<i>Vp-1Bf</i> {10998}.	v:	Wanxanbaimaizi {10998}.

<i>Vp-B1g</i> {11000}.	v:	HD2939 {11000}; Pavon 76 {11000}; Sonora 64 {11000}.
	c:	GenBank GU385904 {11000}.

17.2. Pre-harvest sprouting

QTL

Association mapping of 198 winter wheat genotypes detected 8 QTLs on 7 chromosomes, viz. 1BS, 2BS, 2BL, 2DS, 4AL, 6DL, 7BS and 7DS {10959}.

18. Ear Emergence

19. Earliness per se

Add at end of section:

Cutler / AC Barrie: Three QTL were mapped on chromosomes 1B (*QEps.dms-1B.1* and *QEps.dms-1B.2*) and 5B *QEps.dms5B*) {11039}.

NEW Flag Leaf Width

Two NILs in backgrounds of Mianyang 99-323 and PH691 possessing *Fhb5* in a *Xbarc303-5A – Xbarc100-5A* interval from Wangshuibai spanning the centromere had a narrow leaf phenotype. *QFlw.nau-5A*, re-designated as *TaFLW1*, was mapped to a 0.2 cM region, *Xwmc492-5A – Xwmc752-5A*: bin 5AL12-0.37-0.57, and was separated from *Fhb5*: bin 5AS3-C-0.75 {10934}.

40. Height

40.1. Reduced Height: GA-insensitive

Rht-A1a.	4A {	4A {10923},4AL {11017}.						
	ma:	Xwmc48-4AS-2 cM - Xgwm610-4A-1 cM - Rht-A1-2 cM -						
		<i>Xgpw4545-4AL</i> {11017}.						

Add to existing note:

A functional *Rht-A1a* allele is expressed at a similar level to its orthologues {10923}.

Rht-B1c.	ma:	Allele-specific markers were designed from the gene sequence		
		{10923}.		
	c:	The <i>Rht-B1c</i> transcript carries a 90 bp in-frame insertion within the		
		region encoding the conserved N-terminal DELLA domain plus two		
		SNPs upstream of the insertion. A much larger insertion occurs in the		
		g-DNA {10923}.		
Rht-B1d.	c:	Has the same point mutations as in <i>Rht-B1b</i> – there is likely to be another mutation outside the coding region {10923}.		
Rht-B1e.	v:	Karlik 1 PI 504549 {10924}, Polukarlikovaya 49 and 11 derivatives		
		{10924}.		
	ma:	A PCR marker distinguishes this allele from <i>Rht-B1a</i> and <i>Rht-B1b</i>		
		{10923}.		

	c:	A stop codon occurs three codons upstream of the <i>Rht-B1b</i> mutation {10923}.
Rht-D1.	bin:	0.82-1.00 {11017}.

Immediately following the *Rht-D1d* entry, and before present footnote, insert: *Rht-D1b*, *Rht-D1c* and *Rht-D1d* are identical across the coding region, but *Rht-D1c* has a fourfold increase in copy number relative to *Rht-D1b*; *Rht-D1d* has a reduced copy number relative to *Rht-D1c* {10923,11016}.

40.2. Reduced Height: GA-sensitive

<i>Rht11</i> {718}.	See Rht-B1e.

42. Hybrid Weakness 42.1. Hybrid necrosis

Ne2m.	v:	After Manitou {939}add:	
		HD2329 {10985}.	

Genotype lists in: add:

10985.

65. Response to Vernalization

Vrn-	-B1b.		v:	Ciano 67 {10991}; Polo {10991}; Yaktana 54 {10991}.		
Vrn-B1d			Refe	erred to as $Vrn-B1c$ in {10977,10978}, $Vrn-B1^S$ {10977}.		
[{10	977,109	978}].				
	v:	Albidur	n 43 {	10991}; Albidum 29 {10991}. Garnet {10991}; Lutescens 62		
	{10991}; McMurachy {10991}; Saraovskaya 29 {10977,10991}. 6 variet					
		{10977	}; 25 ·	varieties {10978}.		
	c:			Q593668 {10977}, HQ130482 {10978}. Relative to <i>Vrn-B1a</i>		
		(= <i>Vrn</i> -1	$B1^{DM}$,	Vrn-B1d has a deletion of 0.8 kb and duplication of 0.4 kb in		
intron 1 {				77}.		
Vrn-	-D1					

List the current *Vrn-D1a* as a continuation under *Vrn-D1*.

To the following note, change the ending to '....Ushio Komugi relative to *Vrn-D1* {10202}.

Add note: Nine spring habit *Ae. tauschii* accessions from Pakistan and Afghanistan shared a 5,437 bp deletion in the first intron of *Vrn1-D^t1*; the deletion resulted in a more abundant WFT transcript {10958}. Wheat lines identified as having genotype *vrn-A1*, *vrn-B1 Vrn-D1*, *vrn-2*, *vrn-3* were subdivided into spring and facultative types based on a 110 day non-vernalization flowering test. Relative to *Vrn-D1a*, *Vrn-D1b* has a SNP located 161 bp upstream from the ATG initiation site; cytidylic acid is replaced by aenylic acid. The SNP is in the CArG box, a recognition site for MADS-box proteins

{10996}. In qRT-PCR analyses expression of *Vrn-D1b* was reduced relative to *Vrn-D1a* {10996}. A molecular marker was developed to distinguish the alleles {10996}.

Vrn-D1a	<i>Vrn-D1a</i> {10996}.			Vrn-D1 {1398}.	Spring habit.			
	v:	S	hima	ai 12 {10996}; Yumai	i 7 {10996}; Yumai 18 {10996}; Yangmai 3			
		{]	1099	6}; Yangmai 18 {109	996}.			
	•							
Vrn-D1b	<i>Vrn-D1b</i> {10996}. <i>Vrn-D1</i> {10			<i>Vrn-D1</i> {10996}.	Facultative habit.			
	v:	Ji	mai	26 {10996}; Kenong	199 {10996}; Shi 4185 {10996}; Shi-91-5093			
		{ }	1099	6}; J5265 {10996}.				
c: GenBank JQ406528 {10				ank JQ406528 {1099	6}.			
<i>vrn-D1</i> . c: GenBank AY616457 {10996}.					0996}.			

Following the gene lists continue the paragraph starting 'Allelic variations.....{773}: *Vrn-1, Vrn-2, Vrn-4* and *Vrn-4* alleles in Indian wheats based on markers are postulated in {10986}.

Following 69. Segregation Distortion

NEW. Short Roots

A 'very short root' phenotype was produced by heterozygous genotypes from selected crosses between Chinese Spring and certain synthetics. The *Vsr1* locus was localized to a 3.8 cM interval on chromosome 5DL {11014}.

Vsr1	11014}.		5DL {11014}.		
ma: Xwmc76			$3c765-5D-7.7 \text{ cM} - Vsr1-1.1 \text{ cm} - Xbarc144-5D \{11014\};$		
	Xwmc765-5D-1.9 cM - XWL938-3.3 cM - XWL2506-3.3 cM - Vsr1-				
	$M - XWL954 - 0.5 \text{ cM} - Xbarc144-5D \{11014\}.$				
Vsr	1a.	v	Chinese Spring {11014}.		
Vsr	1b.	v:	TA4152-71 {11014}.		

Proteins

80. Proteins

80.1. Grain protein content

Move the first paragraph and insert below gene *Pro2*.

		<u> </u>							
Gpc-B1b.	Add	Add synonym ',NAM-B1 {10995}.							
	i:	i: Yecora Rojo NIL PI 638740 {10138}.							
	v:	v: As II {10995}; Burnside {11044}; Diamant {10995}; Glencross							
		{11044}; Glupro {10138}; Lilian {11044}; Prins {10995}; Somerset							
		{11044}; Stanley {10995}, T. spelta Altgold {10995}.							
		<i>T. dicoccoides</i> FA-15 {10138}.							

This allele was relatively frequent in Scandinavian and Finnish common wheats, landraces and spelts {10995}.

80.2. Enzymes 80.2.34. Polyphenol oxidase

Ppo-A1	1.	ma:	Xcfa	2058-	2A-0	0.4 cM	I - Ppo-A2 - 0.4 cM - Xiwa174-2A - 8.3 cM -			
1							$A - Ppo-A1 - 11.0 \text{ cM} - Xwmc181-2A \{10931\}.$			
P	po-A	<i>1f.</i>			v:		wawa {10931}.			
P	po-A	<i>1h</i> {1	0931}	. '	v:	Louis	se {10931}.			
					2:	GenE	Bank JN632506 {10931}.			
Ppo-Di	1.	ma:	Xcfd	62-2L	0 - 0.2	2 cM -	Ppo-D2 – 0.4 cM – Xcfd168-2D – 7.7 cM –			
			Xgw	m608	-2A - 1	2.6 cN	$I - Ppo-D1 - 0.9 \text{ cM} - Xbarc349-2D \{10931\}.$			
P	po-D	1a.	v:	Lou	iise {1	0931	}.			
Ppo-A2	? [{10	0930}].	P	PO-A2	2 {109	31}. 2AL {10930}.			
	m	a: 2	Xcfa20	058-2	4 - 0.4	4 cM -	- <i>Ppo-A2</i> – 0.4 cM – <i>Xiwa174-2A</i> – 8.3 cM –			
		2	Xiwa7	593-2	A-0.	6 cM -	$-Ppo-A1 - 11.0 \text{ cM} - Xwmc181-2A \{10931\}.$			
		Ppo	-A2a	{1093	80}.	v:	Alpowa {10930}.			
						c:	GenBank HQ228148 {10930}.			
		Ppo	-A2b	{1093	80}.	v:	Panawawa {10931}.			
						c:	: GenBank HQ 228149 {10930}.			
Ppo-A2c {10931}.				{1093	1}.	v:	Louise {10931}.			
				`		c:	JN632507 {10931}.			
		•								
Ppo-B2	? [{10	0930}].	P	PO-B2	2 {109	30}. 2B {10930}.			
	m	a: 2	Xiwa1	75/Xi	va486	66-2 -	0.7 cM - Ppo-B2 - 2.3 cM - Xiwa7593-2B			
		{	[1093]	1}.			-			
		Ppo	-B2a	{1093	80}.	v: Penawawa {10931}.				
						c:	GenBank HQ228150 {10930}.			
		Ppo	-B2b	{1093	80}.	v:	Alpowa {10930}.			
						c:	GenBank HQ228151 {10930}.			
		Ppo	-B2c	{1093	1}.	v:	Louise {1211}.			
						c:	GenBank JN632508 {10930}.			
Ppo-D2	? [{10	0930}].	PPO	-D2 {	10930	}. 2DL {10930}.			
ma: $Xcfd62-2D-0.2 \text{ cN}$				D-0	.2 cM	- Ppc	o-D2 – 0.4 cM – Xcfd168-2D – 7.7 cM –			
Xgwm608-2A-2			- 2.6 c	cM - F	$Ppo-D1 - 0.9 \text{ cM} - Xbarc349-2D \{10931\}.$					
	Ppo	-D2a	{1093	30}.	v:	Lou	ise {10931}.			
					c:	Gen	GenBank HQ228152 {10931}.			
	Ppo	-D2b	{1093	80}.	v:	Penawawa {10930}.				
	c:				٥.	HQ228153 {10930}.				

80.5.5. Salt soluble globulins 80.5.6. Waxy proteins

Wx-A1			
	Wx-A1a.	V	Bao Hua {10989}.
		tv:	Langdon {10989}.
	<i>Wx-A1i</i> {10989}.	v:	KU9259 {10989}.
	<i>Wx-A1j</i> {10989}.	v:	M1 {10989}.

After *Wx-A1j* add note:

Functional markers for *Wx-A1c*, *Wx-A1d*, *Wc-A1e* and *Wx-A1i* were developed from DNA sequences {10990}.

Pathogenic Disease/Pest Reaction

83. Reaction to *Blumeria graminis* DC. 83.1. Designated genes for resistance

Pm24									
	Pm	24a [{571}]	. Pm24 {571	}.	bin:	1DS5-0.70-1.00.			
	ma:	In the pre	sent listing mod	lify '– <i>I</i>	<i>Pm24</i> – 't	to '- Pm24/Xgwm1291-1D-' and			
		-	ence to {10109,	-		C			
	Pm24	b {10994}.	1DS {10994	4}.	bin:	1DS1-0.59-1.00.			
	v: Baihulu {10994}.								
	ma:	Xgwm78	39/Xgwm603-11	D - 2.4	$cM - Pm^2$	24b – 3.6 cM – <i>Xbarc</i> 229-1D			
		{10994}							
	•								
Pm47.	,	bin:	Correct to: 71	BS1-0.2	27-1.00.				
		ma:	Change to: X	gpw211	<i>19-7B</i> − 7.	5 cM – <i>BE606897</i> – 1.7 cM –			
			Pm47 - 3.6 c	M - Xg	wm46-7A	{M10912}.			
Pm48	[{109	35}].	Pm46 {10935	5}.	5DS {109	935}.			
		bin:	5DS1.	v Ta	basco {10	935}.			
	ma:	Xgwm205	-5D - 17.6 cM	- Pm48	8 - 1.3 cM	1 - Xmp510(BE498794) - 1.8 cM			
		- Xcfd81-	<i>5D</i> {10935}.						
Pm49	{1093	88,[{10937}]}.	Ml532	23 {10937	3. 2BS {10937}.			
	bin		84-1.00.			dicoccum MG5323 {10937}.			
	ma:	Xcau516	5-2B-7.2 cM -	- <i>Pm48</i> -	– 4.1 cM	- <i>XCA695634</i> {10937}.			
Pm50	{1094		{10942}.		C-2AL1	-0.85.			
,	v:	K2 TRI 29	907 {10942}.		tv:	T. dicoccum M129 {10942}			
		ma:	Xgwm294-2A			,			
K2 is	a back	cross deriva	tive of German	winter	wheat cv.	. Alcedeo with <i>T. dicoccum</i>			
access	ion M	129 as dono	or of mildew res	sistance	{10942}.				
Pm51	{1102	26}. F	utative <i>Th. pon</i>	<i>ticum</i> d	lerivative.	<i>PmCH86</i> {11026}.			
	2BL {	11026}.	bin: 2BL	.6-0.89-	1.00.	v: CH7086 {11026}.			
	ma: $Xwmc332-2B-4.7 \text{ cM} - Pm51-1.4 \text{ cM} - BQ246670 \{11026\}.$								

Pm52	<i>Pm52</i> {11029}.			<i>MlLX99</i> {110)28,11029}.	bin	2B	L2-0.35-0.50.
		v:	L	iangxing 99 {				
1	ma:							04758 - Pm52 - 2.9
			_	•	* '			Xics34 - Pm52 - 0.8
		cM-2	Xics30	0 – 6 addition	al <i>ics</i> markers	-Xgwm12	20 {1	1029}.
Pm53	3 {1104	5}.	Deri	ved from Ae.	speltoides.	PmNC-S1	6 {1	1045}.
	5BL {1	1045}.	v:	: NC09BGTS16, PI669386 = Saluda*3 / TAU829 {11045}.				
	al: Ae. speltoides TAU829 {11045}.							
	ma: $Xwmc759/Xgwm499-5B/IWA6024-0.7 \text{ cM} - Pm53 - IWA2454-5.9 \text{ cM} -$						WA2454 - 5.9 cM -	
	$Xgwm408-5B$ {11045}.							

83.2. Suppressors of *Pm* In the introductory paragraph insert ', and 11025} following reference 491, that is '{401, and 11025}'.

83.3. Temporarily designated genes for resistance to *Blumeria graminis*

Ml	Iw170	7 { 10	921}.		2BS.	bin:	2BS3-0.	84-1.0	00.				
		-	_	tv:	T. dica	ccoides	s IW170	{1092	1}.				
	ma:	X	cauG2 -	- 0.6 c	M - MlIv	v170/Xc	cau516/X	cfd238	8-2B -	2.15 cN	<u>/I – </u>	'	
					235/Xwm			v				<i>170</i> { 109:	21}.
Thi	is gen	_			same regi			-				•	
MI	LNCD	1 {1	1004}.	71	OS {1100	4}.	bin:	7DS	4-0.6	-1.00 {	11004}	•	
			v:		6BGD1 P				aluda*	3 / TA2	570 {1	1004}.	
			ma:	Xgwn	n635-7D	- 5.5 &	8.3 cM -	- MlN	CD1 -	16.2 &	13.6 c	M –	
				Хдри	328-7D {	[11004]	}.						
PmAS846 {10926}. 5B				BL {1092	L {10926}. bin: 5BL14-0.75-0.76.								
	v:	N	9134 { 1	10926}	; N9738	{10927	}. tv	T .	dicoc	coides A	S846	{10926}.	
	ma	: 2	XMAG2	2498-5	B - 1.3 c	M-Pm	36/XBJ2	61635	- 1.1	cM - Pi	mAS84	6 - 1.3 cl	M
		-	- XFCF	P1-5B	{10927}.								
Pm	Tm4	{109	961}.		7BL {	10961}.	•	bin:	7B	L10-0.7	8-1.00		
		v:	Tan	gmai 4	ł {10961}	•							
		ma	Xgu	m611-	-7B - 7.0	cM - P	² mTm4 –	14.6 c	M - X	Test92 –	2.9 cM	[—	
			Xba	rc107.	3/Xbarc82	2-7B {1	0961}.						
				<u> </u>									
Pm	$x \{ 11 \}$	009	}.	Re	ecessive.	2AL	. {11009	}.	bin:	2AL	1-0.58	-1.00.	
				v:			11009}.						
	·			ma:	Xhbg3	<i>Xhbg327-2A</i> – 0.6 cM – <i>Pmx/Xsts-bcd1231</i> – 8.9 cM –							
					XresPi	n4/Xgp	w4456-2	A {110	009}.				

This gene and close markers showed distorted segregation ratios and some discrepancy of markers relative to Pm4 alleles $\{11009\}$.

Add at end of section:

A normally inherited resistance to powdery mildew in wheat-*Th. intermedium* translocation line 08-723 (?B-?S^t.6AL) was reported in {11035}.

83.4. QTL for resistance to Blumeria graminis

AGS 2000 (*Pm3a+Pm8*) / Pioneer 26R61 (*Pm8*). *QSuSuPm.uga-1AS* (*SuPm8*) with an inhibitory effect on powdery mildew response was located at or near *Pm3a*. *QPm.uga-7AL* from Pioneer 26R61 flanked by *Xcfa2257-7A* and *Xwmc525-7A* was in the region of the *Pm1* locus, even though the test culture was virulent for known *Pm1* alleles {11025}.

SHA3/CBRD (S) / Naxos (R): RIL population: A major QTL on chromosome 1AS accounted for 35% of the phenotypic variation; other QTL from Naxos were on 2DL, 2BL and 7AL. Although SHA3/CBRD possessed a *Pm3* haplotype but no known *Pm3* allele, there was no evidence that the *Pm3* allele suppressed *Pm8* which appeared to be effective in Norway {10934}.

NEW: Reaction to Colletrichum cereale

Rcc1	! {10939}.		5AL {10939}.		
	v:	Chine	se Spring {10939};	Norin 4 {10939}; Shinchuna	ga {10939}.
	ma:	Xbarc	165-5A – 1.2 cM –	Rcc1 - 12.8 cM - Xgwm671	5A - 0.7 cM -
		Xwmc	<i>415-5A</i> {10939}.		
rcc1.	v:	Hope	{10939}.		

Susceptibility to this non-pathogen of common wheat is rare, with only one susceptible genotype being documented. A few susceptible tetraploid genotypes were identified {10939}.

86. Reaction to Diuraphis noxia (Mordvilko)

Dn6.	7D.						
Dn626580 { 1	10981}		7DS {10981}.	v	PI 626580 {	10981}.	
	ma:	Dn	<i>a</i> 626580 − 1.8 cM −	Xba	arc 214-7D-3	3.2 cM - Xgwm473-7D - 3.2	
	cM – <i>Xgwm473-7D</i> {10981}.						

87. Reaction to Fusarium spp.

87.1. Disease: Fusarium head scab, scab *Fhb5*.

At end of entry add:

Closely linked in coupling with *Qflw.nau-5A* for narrow leaf width, but recombination is reported in {11041}.

To the alphabetical list of crosses insert:

Alve (S) / Line 685 R: DH population: QTL on chromosomes 4D (*Rht-D1*), 3BS, 5A and 2BL {10972}. Two resistance QTL were needed to counteract the negative effect of the *Rht-D1b* semi-dwarfing allele {10972}.

Baishanyuehuang (R) / Jagger (S): RIL population: Four genes/QTLs derived from the resistant parent included *Fhb1* (R² = 0.16), *Qfhb.hwwg-3BSc* (R² = 0.09), *Qfhb.hwwg-3A* (R² = 0.05 – 0.08) and *Qfhb.hwwg-5A* (R² = 0.05 in one trial) {10950}.

Sumai 3 (R) / Y1193-6 (S): RIL population: Three resistance QTL on chromosomes 3BS, 6BL and 2DS with R² values of 0.26, 0.11 and 0.19, respectively; the last was derived from Y1193-6 {11001}.

Treho (S) / Heyne (MR): RIL population: Three QTL from Heyne, viz. Qfhb.hwwg-3AS (R², up to 0.18), Qfhb.hwwg-4DL (R² = 0.14 - 0.23) and Qfhb.hwwg-4AL (R², up to 0.18) {11005}.

VA00W-38 (mod. R) / Pioneer 26R46 (S): RIL population: Consistent QTL from VA00W-38 detected on chromosomes 1BL, 2A, 2DL, 5B, 6A and 7A explained 6.5-21.3% of the phenotypic variation; one QTL from 24R46 was identified on chromosome 7A {11022}. Major QTL on 2DL, 6A and 5B decreased FHB index, Fusarium damaged kernels, and DON, respectively {11022}.

Tetraploid wheat

T. dicoccum line Td161 crossed to three durum parents: small effect QTL were detected on chromosomes 3B, 4B, 6A, 6B and 7B; all except the 6A QTL were located at previously known positions {10993}.

87.2. Disease: Crown rot caused by Fusarium pseudograminearum, F. culmorum and other Fusarium species.

Sunco / Macon: RIL population: QTL were located in chromosomes 2B, 3B, 4B and 4D. *Qcrs.wsu-3BL* from Macon and flanked by *Xgwm247-3B* and *Xgwm299-3B* was the most effective {10932}.

Sunco / Otis: RIL population: QTLs were located in chromosmes 2B, 3B, 4B and 7A. *Qcrs.wsu-3BL* from Otis was the most effective {10932}.

88. Reaction to Heterodera avenae Woll.

89. Reaction to Magnaporthe grisea (Herbert) Barr

Rmg	<i>Rmg6</i> {10948}.		1DS {10948}.	v:	Chinese Spring {10948}; Norin 4 {10948};		
					Shin-Chunaga {10948}.		
	ma: $Xwmc432-1D-9.6 \text{ cM} - Rmg6-6.6 \text{ cM} - Xwmc222-1D \{10948\}.$				6 – 6.6 cM – <i>Xwmc222-1D</i> {10948}.		
Rmg	Rmg6 and a second gene with a weaker effect conferred resistance to a selected Triticum						

x <i>Lolium</i> isolate {10948}.						
<i>Rmg7</i> {11046}.	tv:	T. dicoccum KU112 {11046}; KU120 {11046}; KU1222				
		{11046}.				
	•					
$RmgTd(t) \{10949\}.$	7	7BL {10949}. tv: <i>T. dicoccoides</i> KU109 {10949}.				
	ma	a: $Xhbg338-7B-10.5 \text{ cM} - Rmg7 \{10949\}.$				
RmgTd(t) was detect	ed wi	ith a white culture of an Avena pathogen isolate backcrossed to				
a wheat isolate. Avirulence to $RmgTd(t)$ was completely associated with white color of						
the pathogen isolate {10949}. The white color appeared as a mutant variant during						
backcrossing.						

90. Reaction to Mayetiola destructor (Say) (Phytophaga destructor) (Say)

H13.	13. v:			AGS 2010 {11008}; AGS 2026 PI 658065 {11008};					
			Oglethorpe PI 657986 {11008}.						
H33 {	10954	}.		3AS {10954]	}.	v:	Line 97211 {1	10954}.	
	tv:	PI 13	4942	{10954}.					
	ma:	Xgwi	n218	3A - 10 & 7 cM	- <i>H33</i> -	- 28 &	25 cM - Xhbg	-3A {10954}.	
H34 {	<i>H34</i> {11018}.			<i>Qhf.hwwg-6B</i> {11018}. 6BS {11018}.					
	v:			Clark {11018}.					
		ma:	Flanked by <i>Xsnp921-6B</i> and <i>Xsnp2745-6B</i> within a 4.5 cM region,						
			$R^2 = 0.0.38 - 0.42 \{11018\}.$						
<i>HR61</i> {11008}. 6AL			6AL	{11008}.	bin:	6AL8	3-0.90-1.00 {11	1008}.	
		v:	26R	61 PI 612153 {1	612153 {11008}.				
		ma:	Map	ped as a QTL ($R^2 = 0.63$) flanked by $Xgwm427-6A$ and wPt -					
			7319	<i>936</i> {11008}.					

Insert after temporary designations:

Qhf-hw	wg-1A	{11018}.	1AS {11018}.	v:	Clark <i>H34</i> {11018}.		
	ma:	Closely linked to <i>Xwgm33-1A</i> {11018}; Located within a 6 cM region					
		flanked by $Xwgm33-1A$ and $Xsnp5150-6B$, $R^2 = 0.1$ {11018}.					

Add to comment at end of section:

Haplotype analysis was used to postulate *Ae. tauschii*-derived genes *H13*, *H22*, *H23*, *H26* and *H32* in a set of synthetic wheat lines {10983}.

91. Reaction to Meloidogyne spp.

92. Reaction to Mycosphaerella graminicola (Fuckel) Schroeter

Stb2.	Add: ', 1BS {10976}'.				
	ma:	Following the present information add: According to {10976} <i>Stb2</i> is			

neither on 3BS nor linked with <i>Xgwm389-3B</i> . <i>Xwmc406-1B</i> – 6.0 cM
$-Stb2 - 5.0 \text{ cM} - Xbarc008-1B \{10976\}.$

QTL:

Solitar (R) / Mazurka (S): DH population: Resistance under field conditions was associated with QTL on chromosomes 5A, 6D and 7D which accounted for 20% of the genotypic variation; all three were derived from Solitar, but there was no evidence that *Stb6* and *Stb11*, also present in Solitar, were involved {10984}.

Steele-ND (R) / ND735 (S): RIL population: A consistent QTL ($R^2 = 0.1$) for seedling resistance flanked by DArT markers XwPt-7101 and X377410 was mapped to chromosome 5BL in the region of Stb1 {10992}. Two other QTL on chromosomes 1D and 7A were detected in single experiments {10992}.

93. Reaction to *Phaeosphaeria nodorum* (E. Muller) Hedjaroude (anamorph: *Stagonospora nodorum* (Berk.) Castellani & E.G. Germano).

93.1. Genes for resistance

93.2. Sensitivity to SNB toxins (necrotrophic effectors)

Snn1. Add: **v:** M-6 {10960}.

Snn3. Add: **v:** BG220 {10960}.

Snn5 {	<i>Snn5</i> {10925}.		4BL {10925}.	bin:	4BL-6 0.85-1.00.		
tv:			T. carthlicum PI 94749 {10925}.				
	ma:	$Xbarc 163/Xcfd - 4B - 13.3 \text{ cM} - Snn5 - 2.8 \text{ cM} - Xwmc 349 - 4B \{10925\}.$					
snn5.	tv:	LP749-29 {10925}.					

Host sensitivity genes in US southern winter wheats are listed in {1241}.

XX. Reaction to Puccinia coronata var. hordei

Cr1 {10	0956}.	5DL {10956}.	v:	Chris CItr 14108 {10956}.
	ma:	<i>Xwmc41.2-5D</i> – 11.3 cM –	- <i>Cr1</i> –	16.8 cM – <i>Xgdm63-5DL</i> {10956}.

95. Reaction to Puccinia graminis Pers.

Sr9.					
		<i>Sr9h</i> {11010}.	SrWeb {10)858}.	2BL {10858,11010}.
	v:	RL6203 {11010	}.		
	v2:	Gabo 56 CI 140	35 <i>Sr11</i> {110	010}; Ga	abo CI 12795 <i>Sr11</i> {11010};
		Timstein CI 123	47 <i>Sr11</i> {11	010}. W	ebster RL6201 <i>Sr30</i> {10858}.
	ma:	Xgwm47-2B-1	.4 cM - SrW	yeb - 12.3	5 cM – <i>Xwmc332-2B</i> {10858}.
	•	<u>.</u>			
Sr33.	dv:	Ae. tauschii PI 6	03225 {110	12}.	

11			0.3 cM - 3	Zwmc?	336-1D-1.0 cM - Sr33-4.2 cM -		
i l					$1.0 \cdot 10^{-1.0} \cdot 1.0 \cdot 10^{-3735} = 4.2 \cdot 10^{-1.0} \cdot 1.0 \cdot 10^{-1.0} \cdot 1.0 \cdot 10^{-1.0} \cdot 10^{-1.0}$		
		v	region { 109		1.1 Tanked by <i>BL</i> +03//6 and <i>BL</i> +7//11		
c					rotein and is orthologous to <i>Sr31</i> , <i>Sr50</i>		
					ocus <i>Mla</i> {10987}.		
	an	a the barrey	powdery iiii	ide w i	ocus III (10707).		
<i>Sr35</i> . c	· Sr	35 is a CC-N	NBS-LRR ge	ne {1	09881		
<i>5133.</i> C	• 57.	23 15 u CC 1	VDS LIKK ge	110 (1	0,000].		
Sr39.	2B	{651} = 2S	SL-2SS#2.2S	I #2. {	11037}		
Add at end			, <u>L 200112.20</u>	, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	11037).		
			ments are de	escribe	ed in {11037} along with tightly linked		
co-dominar		_	, inclus are at	0001101	od in (11057) drong with rightly innied		
Sr42.	ma: X	/cfd49-6D =	5.5 cM - Xh	parc18	83-6D - 0.5 cM - Sr42/FSD_RSA -		
37 720		v			6D - 5.9 cM - Sr42 - 46.9 cM -		
		Xcfd13-6D {		3			
Add note:	<u> </u>		<u>, </u>				
The likelihe	ood that	Sr42 is the s	ame as <i>SrTn</i>	<i>ip</i> and	SrSha7 (see below) is discussed in		
				•	e#1, Ripper and Tinkio1 were shown to		
				-	me 6DS. If they are the same, this list		
would be e	nlarged t	o include Di	igalu, Gambo	o, Kos	shan 09 and Morvarid {11035}. Nearest		
markers Xb	arc183-0	6D and Xcfd	49-6D but n	ot in c	onsistent order {11035}.		
		-					
<i>Sr44</i> {389}	}.	Changes a	nd new entry	as fo	llows:		
		Derived fr	om Th. inter	mediu	m.		
T7	DS-7J#1	L.7J#S 7J#1	IL {389}.	v:	Line 86.187 TA5657 {939}; Several 7A-7J#1L translocations {0089}.		
T7	DL.7J#1	S {11011}.		v:	TA5657 {11011}.		
	#2, 7J#2\$		Group 7 al {939}.		bstitution lines with 7J#1 and 7J#1S		
		ad:	TAF2 = L	1 {169)}.		
L		L	1		•		
Sr53.	ma:	Closest m	arkers: <i>BE44</i>	43102 _/	Mbo1 and BE442600/Mse1 {10789}.		
					, ,		
Sr54. ma: $Xcfd-283-2D-8.1 \text{ cM} - Sr54/\text{linkage block of } 18 \text{ markers} - 15.8$							
$cM - Xwmc167-2D \{10816\}.$							
The possibility of a large alien linkage block was supported by the fact that many of the							
associated markers were null {10816}.							
, ,							
Sr58 {10965}. 1BL {10965}. su: Lalbahadur(Pavon1B) (GID 519245) {10965}.							
-		<u> </u>	·		D 5349718) {10965}; Lr46 Deletion		
Mutant 111 (GID 5349716) {10965}.							
		`		*			
SrTA1662 {11012}.							
ST1A1662	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						

		{1101	2}.				
SrTmp.	Add no	te:					
	The pos	sibilit	y of this ger	ne beir	ng pr	esent in a number of South African	
	cultivars, including Betta = Klein Impacto, is discussed in {10941}.						
SrWeb.	Delete o	current	t listing as t	his gei	ne is	now named Sr9h.	
Sr10171 {1	0936}.	7DS	7DS {10936}. v: Genetic stock to be designated {10936}.				
	dv:	Ae. to	auschii TA	<i>ii</i> TA10171 {10936}.			
	ma:	<i>Sr10171</i> − 0.9 cM − <i>Xgdm88/Xwmc827-7D</i> − 1.9 cM − <i>Xcfd30-7D</i>					
		{109	36}.		_		
Sr10187 {1	0936}.	6D	6DS {10936}.		v Genetic stock to be designated {10936}		
	dv:	Ae tau	schii TA10	187 { 1	1093	6}.	
ma:	V (140 CD 10 N C 10177 10 C N VI 173 CD (1002C)					- 13.6 cM – <i>Xbarc173-6D</i> {10936}.	

QTL

Avocet S / Pavon 76: RIL population of lines lacking Sr26: Five QTL, QSr.cim-3B (Sr2), QSr.cim-1B (Lr46/Yr29/Pm39 region) and QSr.cim-3D ($R^2 = 0.2$) from Pavon 76; QSr.cim-4B and QSr.cim-5A from Avocet S {10975}.

Carberry (Resistant in Canada) / AC Cadillac (Resistant in Canada and Kenya): DH population: QTL effective in Kenya were located in chromosomes 2B, 5B, 7B and 7D, those effective in Canada were on 3B (*Sr2*), 5A and 5B; those effective in Kenya and Canada were on 4B and 6D (*Sr42*); both parents had *Lr34/Sr51* {11040}.

PBW343 (S) / Muu (I): RIL population: 4 consistent QTLs were identified, *QSr.cim-2BS*, *QSr.cim-3BS* (*Sr2*), and *Sr.cim-7AS* from Muu, and *QSr.cim-5BL* from PBW343 {11019}.

96. Reaction to *Puccinia striiformis* Westend. 96.1. Designated genes for resistance to stripe rust

<i>Yr17</i> .	v:	Jagger {10973}.
<i>Yr29</i> .	v:	Quaiu 3 <i>Yr30</i> {10943}.
<i>Yr36</i> .	v:	Burnside {11044}; Glencross {11044}; Lilian {11044}; Somerset
		{11044}.
<i>Yr30</i> .	v:	Quaiu 3 <i>Yr29</i> {10943}.
<i>Yr31</i> .	ma:	Add: It is mentioned in {10928} that <i>Yr31</i> maps between <i>Lr13</i> and <i>Lr23</i> .
<i>Yr45</i> .	v:	Add: PI 660056 {11024}.

<i>Yr48</i>	Yr48 {10705}. Adult p		Adult pla	ant resistance.	5AL {10705}.		
			bin:	5AL23-0.87-1.00.			
	v:	UC1110 (MR) / PI 610750 (MR): RIL4 GSTR 13504 {10705}; RIL 167					
		GSTR 13618 {10705}.					
	ma:		Co-segregated with Vrn2, Be495011, Xcfa2149-5AL, Xgpw2181a-5AL,				
		<i>Xwmc74-5AL</i> , and <i>Xwmc410-5AL</i> {10705}. <i>Xwmc727-5AL</i> – 4.4 cM – <i>Yr48</i>					
		-0.3	cM - Xw	ms291-5AL {10705}			

PI 610750 = Synthetic 205 (Croc 1 / Ae. tauschii) / Kauz) {10705}.

Yr50. ma: Change the first map value from 6.9 to 8.0.

Add note:

The genetic distance between Yr50 and Yr62 was estimated to be 27.1 \pm 8.6 cM {11023}.

Yr51. Update by addition of second gene v2: AUS 27858 *Yr57*.

Yr53. bin: 2BL3-0-0.35.

Yr54 {1094	4}.	Adult plant resistance. 2DL {10944}.				
	v:	⁴ RIL GID6032209 {10944}; <i>Yr54</i> RIL GID6032334 {10944}.				
	v2:	Quaiu 3 Yr29 Yr30 {10943,10944}.				
	ma:	$Yr54 - 0.4 \text{ cM} - Xgwm301-2D \{10944\}.$				

Yr54 could be the same as *Qyr.tam-2D* in Alcedo {10945}.

Yr55	{ 10953	3}.	2DL {1	0953}.	v2:	Frelon Yr17 AUS 38882 {10953}.		
	ma:	Xm	ag4089-	2D - 11.4 - cN	1 – <i>Yr55</i> -	- 8.4 cM – <i>Xmag3385-2D</i> {10953}.		
Yr56	{10955	5}.	Qyr.sur	<i>Qyr.sun-2A</i> {10955}.		2AS {10955}.		
			bin:	Tentatively 2AS5-0.78-1.00 {10955}.				
			tv:	AUS 91575 {10955}; Wollaroi (AUS 99174) {10955}.				
		ma:	Xbard	<i>Xbarc212-2A</i> – 3.7 cM – <i>Xbarc124-2A</i> – 2.1 cM – <i>Xsun167-2A</i> –				
			5.7cN	1 - Yr56 - 7.6	cM – Xsur	n168-2A - 5.0 cM - Xsun169 2A - 8.0		
			cM –	Xgwm512-2A {	[10955].			
Wolla	roi has	s additi	onal AP	R resistance QT	TL {1095	5}.		
Yr57	{ 10963	3}.	3BS	\$\{10963\}. bin: 3BS8-0.78-1.00.		3BS8-0.78-1.00.		
		v:	AUS 914	63 {10963}. v2: AUS 27858 <i>Yr51</i> {10963}.		AUS 27858 <i>Yr51</i> {10963}.		
		ma:	Xsts3.	Xsts3B-15-49 cM $-Yr57-2.0$ cM $-$				
			Xgwm.	<i>vm389/Xcfp140/Xmag2095-3B</i> {10963}; <i>Yr57–Yr4</i> , 5.2±1.3 cM				
			{10963	3}.				
<i>Yr58</i> {10964}. 3BL {10964}.					bin:	3BL7-0.63-1.00.		
V				v: Sonora W195 AUS 19292 {10964}.				
ma:			10001	16328/123392 -	- 4.6 cM -	<i>- Yr58 − 3.9 cM − 1121669/3023704</i>		
			{1096	54}.				
			•					

Yr59 {10966	5) A	dult plant resistance. 7BL {10966}. bin : 7BL-0.86-1.00.							
` _	, ,								
	v1:	PI 660061, Avocet S / PI 178759 F ₄ -158{10967}.							
-	v2:	PI 178759 {10966}.							
	ma:	Xwmc557-7B - 2.2 cM - Xwgp5175 - 2.1 cM - Yr59 - 1.1 cM -							
		<i>Xbarc32</i> – 0.5 cM – <i>Xbarc182-7B</i> {10966}.							
		in high temperature seedling tests (10966,10967). Yr59 is a highly							
		stance gene. Crosses with lines possessing <i>Yr39</i> , <i>Yr52</i> , or <i>YrZH84</i>							
		on chromosome 7BL segregated, indicating that they are at different							
		llelism test data are based on F2 phenotypes only. The linkage order							
U	\ T	oximal) $Yr39 - 31.2 \text{ cM} - Yr52 - 5.4 \text{ cM} - YrP1178759 - 6.0 \text{ cM} -$							
YrZH84 (dis	tal).								
T7 (0 (100 (0		447 (10050)							
Yr60 {10968	3}. 	4AL {10968}.							
	v:	Avocet*3//Lalbmono1B*4/Pavon, GID 5934039 {10968}; Lal							
		Bahadur (GID 177343) {10968}.							
	ma:	<i>Yr60/Xwmc776-4A</i> − 0.51 cM − <i>Xwmc313/Xwmc219-4A</i> {10968}.							
	· · · · · ·	12 (100=0)							
Yr61 {10970)}. 7.	AS {10970}.							
	v:	\mathcal{E}							
	ma:	Xwgp5765b - 3.9 cM - Yr61 - 1.9 cM - Xwp5467 - 12.5 cM - Yr61 - Yr6							
		<i>Xcfa2174</i> {10970}.							
W 62 (1102)		A 1 1, 1 ,							
` .	Yr62 {11023}. Adult plant resistance. bin: 4BL5-0.86-1.00).								
4BL	. {11023								
	7777.4	F4-103{11024}.							
ma:		3611-4B-0.8 cM - IWA4041-4B-0.8 cM - IWA2171-4B-0.7 cM							
		A99-4B-1.0 cM - IWA1923-4B-1.2 cM - Xgwm251-4B-3.3 cM							
		$62 - 2.0 \text{ cM} - Xgwm192-4B - 0.6 \text{ cM} - Xgwm495-4B - 0.7 \text{ cM} - m513-4B \{11023\}.$							
The genetic		between $Yr62$ and $Yr50$ was estimated to be 27.1±8.6 cM {11023}.							
The genetic (uistance	between 1702 and 1730 was estimated to be 27.1±6.0 cW {11023}.							
Yr63 {11027	71 71	BS {11027}. bin: 7BS1-0.27-1.00.							
v:		27955 {11027}. bil. 7551-0.27-1.00.							
		33120 - 0.9 cM - Yr63 - 1.5 cM - IWB52844 - 10.5 cM - Xwmc606							
ma:		33120 - 0.9 cm - 1703 - 1.3 cm - 1 mB 32844 - 10.3 cm - 2 mmcood 11027.							
	/ <i>D</i> \	11027 }.							
Yr64 {11030))	1BS {11030}. bin : 1BS9-0.84-1.00.							
v:	, , , , , , , , , , , , , , , , , , , ,	60064 = Avocet S / PI 331260 {10967}.							
tv:		31260 {11030}.							
ma:		rc8-1B-0.6 cM - Xbarc119-1B-6.5 cM - Xgwm413-1B-3.5 cM - Xgwm413							
ina.		4 - 2.0 cM - Xgdm33 - 1B - 5.0 cM - Xgwm498 - 1B - 3.9 cM - Xcfd59							
		0.4 cM - Xgwm273-1B - 3.9 cM - Xgwm18-1B - 2.6 cM - Xgwm273-1B - 3.9 cM - Xgwm18-1B - 2.6 cM - Xgwm							
		rc137-1B – centromere {11030}.							
I	11001	cze. 22 centromete (22000).							
Yr65 {11030)}.	1BS {11030}. bin : 1BS10-0.5-centromere.							
	· , ·	125 (1155). Dani 12510 0.5 controllere.							

		v:	AvS /	PI 480016 F ₇	-12 {110	30}. tv :	PI 480	0016 {11030}.
	ma : Xbarc119-1B - 6.5 cM - Xgwm413-1B - 5.5 cM - Xgdm33-1B - 4						cM - Xgdm33-1B - 4.6 cM -	
	Xgwm498-1B-3.5 cM - Xbarc187-1B-2.8 cM - Xgwm273-1B-3.5							cM - Xgwm273-1B - 3.7 cM
	-Xgwm18-1B-1.2 cM - Yr65-2.1 cM - Xgwm11-1B-2.1 cM -							
			Xba	<i>rc137-1B</i> – ce	ntromere	{11030}.		
Yrt	66 {]	11032	2 }. Yr	<i>VL1</i> {11032}.	3DS	{11032}.	bin:	3DS6-0.55-1.00.
	v1:	3	AGG91	1584WHEA =	MSP45	43.1 {11032	. }.	
	v2:	;	VL892	= AGG91586	WHEA	Yr67 {11032	2}.	
	ma	1:	IWB47	165 - 3.1 cM	– <i>Yr66</i> –	2.9 cM - IW	VB1808	7/IWB56281 {11032}.
Yre	57 {]	11032	2}.	YrVL2 {11032	2}; <i>YrC5</i>	91 {11033}.	•	7BL {11032,11033}.
	bin	1:	7BL10-	-0.78-1.00.	v1:	AGG91585	5WHE	A = MSP4543.4 {11032};
						C306 {110	32}; C:	591 {11032;11033}.
		v2: VL892 = AGG91586WHEA <i>Yr66</i> {11032}.						
		ma:	na: $Xbarc182-7BL-5.2 \text{ cM} - IWB62475/IWB37096-1.1 \text{ cM} - Yr67-0.6 \text{ cM}$					
			-IWE	37 <i>1995</i> {1103	2}; <i>Xbar</i>	c32-7BL-2	2.2 cM -	-Xcfa2040-7B-8.0 cM -
			Yr67	-11.7 cM - S	C-P35M	48 {11033}.		

96.2. Temporarily designated genes for resistance to stripe rust

YrAvS {11007	AvS {11007}. v: Avocet R {11007}; Avocet S {11007}.						
This designation	This designation was used to describe an assumed resistance gene in both Avocet R and						
Avocet S, the l	latter be	ing the	e genetic background	d of the Avocet S ne	ear-isogenic lines. Av		
S NILs with Y	r7, Yr7	and Yr	9, as well as Avocet	R, were susceptible	e to the variant of <i>Pst</i>		
race 6 E0 {110	007}.						
YrH9020 {109	979}.	Deriv	ed from Psathyrosta	achys huashanica.	2DS {10979}.		
		v:	H9020-1-6-8-3 {10	979}.			
ma: X	gwm102	2-2D -	- 3.8 cM <i>– Xgwm455</i>	5-2D - 5.8 cM - YrF	H9020 – 4.4 cM –		
X_{i}	gwm26.	1-2D -	-2.3 cM - Xwmc50	3-2D - 0.6 cM - Xc	fd53-2D {10979}.		
YrKK {11034}	}.	Adult	t plant resistance.	2BS {11034}.			
bin: 2BS-1. v:			Kenya Kuku {11034}.				
ma <i>Xgwm148-2BS</i> – 3.2 cM – <i>YrKK</i> – 1.8 cM – <i>Xwmc474-3B</i> {11034}.							
Resistance conferred by <i>YrKK</i> at the adult stage approached immunity. A slight effect was							
observed on see	dling res	sponse	{11034}.				

96.3. Stripe rust QTL

In cross 'Avocet / Attila', correct spelling to 'Avocet'

Avocet (S) / Chapio (I): F_6 RIL population: In Mexico QTL were located in chromosomes 2BS (Yr31), 3BS (Yr30) and 7DS (Yr18); only the last two were effective in 2009. In China QTLs were located in chromosomes 3BS, 5BL and 7DS. A 3DS QTL was effective in Mexico in 2009 and in China in 2013 {11020}.

Avocet (S) / Pastor (I): RIL population: QTL mapped on 1BL (*Yr29*), 2BS (*Yr31*), 5A, 6B, and 7AL plus minor QTLs on 1AL, 1B, 3A, 3B, 4D, 6A, 7AS and 7AL {10928}.

Claire / Lemhi: DH population: 4 QTL for APR: Qyr.niab-2D.1 (at or near Yr16, $R^2 = 0.1 - 0.25$), Qyr.niab2DL.2 ($R^2 = 0.14 - 0.32$), Qyr.niab-2BL, and Qyr.niab-7B ($R^2 = 0.11 - 0.13$) {10962}. An unknown seedling resistance gene was located in chromosome 3BL {10962}.

Jagger (MR) / 2174 (MS): RIL population: *Qyr.osu-2A* (*Yr17*) and *QYR.osu-5A* (in *Xgwm156-5A* – centromere region) from Jagger and *Yr18* from 2174 (but only in tests in China) {10973}.

Yr16DH70 (Cappelle Desprez/2*Palmiet Selection) / Palmiet: DH population: One major effect QTL, *Qyr.ufs-2A*, and three less effective QTLs in 2D (possibly *Yr16*), 5B and 6D were from Yr16DH70, and a minor effect QTL on 4B was from Palmiet {10933}.

UC1110 (MR) / PI 61070 (MR): RIL population: Four QTL for APR: two, Qyr.ucw-3BS, peaking at Xgwm533.1, R^2 =0.22, and Qyr.ucw-2BS, R^2 =0.05 from UC1110, and Yr48 and Qyr.ucw-2AS, R^2 =0.02, from PI 61070 {10705}.

92. Reaction to Puccinia triticina

92.1. Genes for resistance

Lr3a.		v:	Sinvalocho MA {10929}.						
Lr3c.		v2:	CI 13227 {11021}.						
Lr12.		,4BL {	10951}. bin 4BL5-0.86-1.00.						
n	na:	Xgwm	$251-4B-0.9 \text{ cM} - Lr12 - 1.9 \text{ cM} - Xgwm149-4B \{10951\}.$						
<i>Lr14</i> .									
Lr.	14a.	bin:	7BL10-0.78-1.00.						
	tv:	Add	Arcangelo {11015}; Bicre {11015}; Creso {11015}; Colosseo						
		{110	015}; Italo {11015}; Plinio {11015}.						
	ma	: Add:	Xwmc10/Xgwm344/wPt1085-7B-1.1 cM - wPt4038-HRM-0.1						
		cM -	$-Lr14a - 1.0 \text{ cM} - wPt4140 - HRM \{11015\}.$						
Lr.	14b.	v2: (CI 13227 <i>Lr68</i> {10817}.						
Add no	ote: N	Aost acc	cessions with <i>Lr14b</i> , including the Tc NILs probably carry APR						
gene L	r68 {	10817}	which could be the same as <i>QLr.osu-7BL</i> {10817}.						
<i>Lr23</i> . v2:		v2:	: Pastor <i>Lr46</i> {10928}.						
<i>Lr35.</i> 2B {651} = 2SL-2SS#2.2SL#2 {11037}.									
		i: R	RL 6082 = Thatcher*7/RL 5711 {11037}.						
Add n	ote:	Lines	with shortened alien segments bearing Lr35 are described in						

1074	1}.							
Lr42.		v2:	Quaiu 3 <i>Lr46</i> {10943}.					
T 16	w// Vie Ciata Carros (10017)							
<u>Lr46.</u>		v:	Siete Cerros {10817}.					
	-	v2:	CI 13227 <i>Lr3c</i> {M12013}; Quaiu 3 <i>Lr42</i> {10943}.					
		v2:	Parula <i>Lr3b Lr13 Lr14b Lr34 Lr68</i> {10817}. Frontana <i>Lr13</i>					
			Lr14b Lr34 Lr68 {10817}.					
Lr68	{1081′	7}.	Adult plant resistance. 7BL {10817}.					
	v2:		ula <i>Lr3b Lr13 Lr14b Lr34 Lr46</i> {10817}. Frontana <i>Lr13 Lr1-</i>					
			² 4 Lr46 {10817}. Arula 1 Lr14b CIMMYT GID 1847450 {10817					
			ıla 2 <i>Lr14b</i> CIMMYT GID 1847422 {10817}. Rayon F89 <i>Lr1</i> -					
			0817}; Weebill <i>Lr14b</i> {10817}.					
	ma:		mc232-2B-0.2 cM - Xcfa2257-2B-1.1 cM - Cs7BLNLRR - 0.3					
		$cM - Psyl - 1 - 0.5 cM - Lr68 - 0.6 cM - Xgwm146-2B {10817}.$						
			Gamma-irradiation induced deletion stocks of Arula 1 lacked <i>Lr68</i> but					
		hade	hade $Lr14b$ showing that the two genes are located at different closely					
			xed loci {10817}.					
Lr71.	bin:	Mar	rkers flanking <i>Lr71</i> mapped to 1BS10-0.5-cent and 1BL6-cent-					
		0.32	2.					
	v2:	T. sp	pelta cv. Altgold Rotkorn Lr65 {10911}.					
<i>Lr72</i> {	10947	}. 7	7BS {10947}. tv: Altar C84 GID 30374 {10947}; Atil C2000					
			GID 6719128 {10947}.					
		r	ma: $Lr72 - 5.0 \text{ cM} - Xwmc606-7B \{10947\}.$					
<i>Lr73</i>	{10969	9}.	2BS {10969}. 2BS {10969}.					
		v:	Morocco {10969}; Several Australian cultivars {10969}.					
		ma	a: $wPt8760 - 4 \text{ cM} - Lr73 - 1.4 \text{ cM} - wPt8235 \{10969\}.$					
<i>Lr74</i>	{1103		Adult plant resistance. 3BL {11031}.					
	bin:	3BL	L7-0.63-1.00. v1: AGG91583WHEA = BT-Schomburgk					
			Selection {11031}.					
	ma:		S2256311 - 3.9 cM - Lr74 - 2.5 cM - IWB69699/IWB20762 - 2.5					
		cM	- <i>GBS2325308</i> {11031}.					
<u>LrBi1</u>	6 {110		7BL {11042}. v: Bimai 16 {11042}					
	ma:		fa2257-7B - 2.8 cM - LrBi16 - 2.9 cM - Xgwm344-7B {11042}.					
Bimai	16 als	so carr	ries <i>Lr26</i> and <i>LrZH84</i> {11042}.					
		203	TDV (44020)					
LrFu	$\frac{n}{ \mathbf{v} } \frac{\{110\}}{\mathbf{v}}$		7BL {11038}. bin: 7BL-10. dulea 90 {11038}. ma: <i>Xgwm344-7B</i> – 4.4 cM – <i>LrFun</i> – 3					

					$CIVI = AWIIIC/O-/D \{11030\}.$			
LrGa	<i>LrGam6</i> {10929}. 2BL {10929}.			v2:	Sinvalocho MA <i>Lr3 LrSV1 LrSV2</i>			
		,		, _ ,	{10929}.			
		Vhan	$\frac{1}{10000000000000000000000000000000000$	202				
	ma:			wmsoz.	-2B - 0.6 cM - LrGam6 - 17.9 cM -			
		Xgwi	<i>m528-2B</i> {10929}.					
LrNJ	197 {110	043	2BL {11043}.	v:	Neijiang 977671 {11043}.			
	ma:	Xи	mc317-2B - 4.2 cN	1 - LrN	J97 - 2.2 cM - Xbarc159-2B - 2.3 cM			
		-2	Kwmc356-2B {11043	3}.				
		•						
LrSV	1 {1092	29}.	Adult plant resistan	ce.	2DS {10929}.			
	v2:	Sinva	locho MA <i>Lr3 LrG</i> e	am6 LrS	SV2 {10929}.			
	ma:	Xgwn	n296-2D – 1.4 cM –	LrSV1	−7.1 cM − <i>Xgwm261-2D</i> {10929}.			
LrSV	2 {1092	29}.	Adult plant resistan	ce.	3BS {10929}.			
	v2:	Sinva	locho MA <i>Lr3 LrG</i>	am6 LrS	SVI {10929}.			
	ma: $Xgwm389-3b-3.0 \text{ cM} -$			LrSV2/	Xgwm533-3B-4.2 cM - Xgwm49-3B			
{10929}.								
LrZh	84.	v:	Add: Guizhou 98-	18 { 110	042};Tian 95HF2 {M1215}; Xinong			
			1183-4 {11042}.					
			1105 (11012).					

 $cM - Xwmc70-7B \{11038\}.$

Complex genotypes:

Insert the following alphabetically with the existing file:

 Estanzuela Benteveo
 Lr13 Lr26 Lr34 {10980}

 Estanzuela Pelon
 Lr1 Lr17a Lr26 Lr34 {10980}

 Estanzuela Tarariras
 Lr3bg Lr13 Lr34 {10980}

 INIA Boyero
 Lr13 Lr26 Lr34 {10980}

 INIA Churrinche
 Lr10 Lr24 {10980}

 INIA Tero
 Lr17a Lr24{10980}

97.2. Suppressor of genes for resistance to P. triticina

97.3. QTL for reaction to P. triticina

To the paragraph beginning with 'QTLS' add: However, Thatcher backcross derivatives of CI 13227 appeared to have *Lr3c* and *Lr46* {11021}.

Avocet / Pastor: RIL population: QTLs mapped on 1BL (*Lr46*), 2BS, 5A, 6B and 7BL plus minor QTLs on 1B, 2A and 2D {10928}.

99. Reaction to Sitodiplosis mosellana (Gehin)

Sm1. v: Glencross {11044}; Goodeye {11044}.
--

103. Reaction to Tilletia caries (D.C.) Tul., T. foetida (Wallr.) Liro, T. controversa

Bt11 {10997}. v: PI 554119, Elgin / PI 166910 {10997}.
--

<i>Bt12</i> {10997}.	v:	PI 119333 {10997}.
<i>Bt13</i> {10997}.	v:	Thule III, PI 181463 {10997}.
<i>Bt14</i> {10997}.	tv:	Doubbi CI 13711 {10997}.
<i>Bt15</i> {10997}.	tv:	Carleton CI 12064 {10997}.
<i>Btp</i> {10997}.	v:	PI 173437 {10997}.

QTL

Trintella / Piko: DH population: One major gene in the chromosome 1BS centromere region, nearest marker Xgwm273-1B {11003}. Smaller QTL effects were detected on chromosomes 7A, 7B and 5B in different years.

105. Reaction to Ustilago tritici (Pers.) Rostrup

<i>Ut5</i> {10940}.		<i>Ut-Fore</i> {10940}.	v:	Foremost {10940}.	5BL {10940}.		
ma:		Xgpw5029 - 2.8 cM	– <i>Ut5</i>	- 1.3 cM - <i>Xbarc232-5</i>	5b {10940}.		
Race T10 was used for analysis {10940}.							

107. Reaction to Wheat Streak Mosaic Virus

Wsm1.		v:	CA741 {10971	1 }; KS	503HW12 {11006}; Mace {11006}.
Wsm2.	ma:	Add: Xb	arc 87 - 3B - 4.4	cM -	<i>Wsm2</i> − 3.9 cM − <i>Xbarc102-3B</i> {10982}.
Add note: Allele <i>Xbarc102-3B</i> ₂₁₉ was the best predictor for <i>Wsm2</i> {10982}.					
Wsm3.	7B,	, TBS.7S‡	#3L {10775}.	v:	KS12WGGRC59 TA5624 {10775}.
Wsm3 was also effective against Triticum mosaic virus at 18°C {10775}.					

References

Updates	
952.	McIntosh RA and Lagudah ES 2000. Cytogenetical studies in wheat. XVIII. Gene
	Yr24 for resistance to stripe rust. Plant Breeding 119: 81-83.
10705.	Lowe I, Jankuloski L, Chao SM, Chen XM, See D and Dubcovsky J 2011 Mapping
	and validation of QTL which confer partial resistance to broadly virulent post-2000
	North American races of stripe rust in hexaploid wheat. Theoretical and Applied
	Genetics 123: 143-157.
10774.	Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y and
	Gill BS 2011 A novel Robertsonian event leads to transfer of a stem rust resistance
	gene (Sr52) effective against race Ug99 from Dasypyrum villosum into wheat.
	Theoretical and Applied Genetics 123: 159-167.

10775.	Liu W, Seifers DL, Qi LL, Friebe B and Gill BS 2011 A compensating wheat-
	Thinopyrum intermedium Robertsonian translocation conferring resistance to wheat streak mosaic virus and <i>Triticum</i> mosaic virus. Crop Science 61: 2382-2390.
17789	Liu WX, Rouse M, Friebe B, Jin Y, Gill B and Pumphrey MO 2011 Discovery and
17705	molecular mapping of a new gene conferring resistance to stem rust, $Sr53$, derived
	from Aegilops geniculata and characterization of spontaneous translocation stocks with
	reduced alien chromatin. Chromosome Research 19: 669-682.
10816.	Ghazvini H, Hiebert CW, Thomas JB and Fetch T 2013 Development of a multiple
	bulked segregant analysis (MBSA) method used to locate a new stem rust resistance
	gene (Sr54) in the winter wheat cultivar Norin 40. Theoretical and Applied Genetics
10017	126: 443-449.
10817.	Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Periyannan SK, Viccars L, Calvo-Salazar V, Lan C and Lagudah ES 2011 <i>Lr68</i> : A new gene conferring
	slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics 124:
	1475-1486.
10849.	Liu J, Chang ZJ, Zhang XJ, Yang ZJ, Li X, Jia JQ, Zhan HX, Guo HJ and Wang JM
	2013 Putative <i>Thinopyrum intermedium</i> -derived stripe rust resistance gene <i>Yr50</i> maps
	on wheat chromosome 4BL. Theoretical and Applied Genetics 126: 265-274.
10854.	2013. Molecular mapping of $Yr53$, a new gene for stripe rust resistance in durum
	wheat accession PI 480148 and its transfer to common wheat. Theoretical and Applied
10056	Genetics 126: 523-533.
10856.	Lillemo M, Joshi AK, Prasad R, Chand R and Singh RP 2013 QTL for spot blotch in
	bread wheat line Saar co-locate to the biotrophic disease resistance loci <i>Lr34</i> and <i>Lr46</i> . Theoretical and Applied Genetics 126: 711-719.
10910.	= -
10910.	Mohler V, Singh D, Singrun C and Park RF 2012 Characterization and mapping of <i>Lr65</i> in spelt wheat 'Altgold Rotkorn'. Plant Breeding 131: 252-257.
10911.	Singh D, Mohler V and ParK RF 2013 Discovery, characterization and mapping of
	wheat leaf rust resistance gene $Lr71$. Euphytica 190: 131-136.
10912.	Xiao MG, Song FJ, Jiao JF, Wang XM, Xu HX & Li HJ 2013 Identification of the
	gene <i>Pm47</i> on chromosome 7BS conferring resistance to powdery mildew in the
	Chinese wheat landrace Hongtanglazi. Theoretical and Applied Genetics 126: 1397-
N T	1403.
New 10021	Liu 71 7hu I Cui V Liang V Wu HP Cong W Liu O Vong TM Cun OV and Liu
10921.	Liu ZJ, Zhu J, Cui Y, Liang Y, Wu HB, Song W, Liu Q, Yang TM, Sun QX and Liu ZY 2012 Identification and comparative mapping of a powdery mildew resistance
	gene derived from wild emmer (<i>Triticum turgidum</i> var. <i>dicoccoides</i>) on chromosome
	2BS. Theoretical and Applied Genetics 124: 1041-1049.
10922	Bertin I, Fish L, Foote TN, Knight E, Snape J and Moore G 2009 Development of
	consistently crossable wheat genotypes for alien wheat gene transfer through fine
	mapping of the <i>Kr1</i> locus. Theoretical and Applied Genetics 119: 1371-1381.
10923.	Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N,
	Korolev A, Boulton MI, Phillips AL, Heddon P, Nicholson P and Thomas SG 2011
	Molecular characterization of <i>Rht-1</i> dwarfing genes in hexaploid wheat. Plant
10024	Physiology 157: 1820-1831.
10924.	Divashuk MG, Vasilyev AV, Bespalova LA and Karlov GI 2102 Identity of the <i>Rht-land Pht Bla</i> reduced plant height genes. Pussion Journal of Constitute 48: 761-763
	11 and Rht-B1e reduced plant height genes. Russian Journal of Genetics 48: 761-763.

10925.	Friesen TL, Chu CG, Xu SS and Faris JD 2012 SnTox5-Snn5: a novel Stagonospora
	nodorum effector-wheat gene interaction and its relationship with the SnToxA-Tsn1
	and SnTox3-Snn3-B interactions. Molecular Plant Pathology 13: 1101-1109.
10926.	Wang CY, Ji WQ, Zhang GS, Wang QY, Cai DM and Xue Z 2007 SSR markers and
	preliminary chromosomal location of a powdery mildew resistance gene in common
	wheat germplasm NJ134. Acta Agronomica Sinica 33: 163-166.
10927.	Xue F, Ji WQ, Wang CY, Zhang H and Yang BJ 2012 High-density mapping and
	marker development for the powdery mildew resistance gene <i>PmAS846</i> derived from
	emmer wheat (<i>Triticum turgidum</i> var. <i>dicoccoides</i>). Theoretical and Applied Genetics
	124: 1549-1560.
10928.	Rosewarne GM, Singh RP, Huerta-Espino H, Herrera-Foessel SA, Forrest KL, Hayden
10,20.	MJ and Rebetzke GJ 2012 Analysis of leaf and stripe rust severities reveals pathotype
	changes and multiple minor QTLs associated with resistance in a Avocet × Pastor
	wheat population. Theoretical and Applied Genetics 124: 1283-1294.
10929.	Ingala L, Lopez M, Darino M, Pergolesi MF, Dieguez MJ and Sacco F 2012 Genetic
10929.	
	analysis of leaf rust resistance genes and associated markers in the durable resistant
10020	wheat cultivar Sinvalocho MA. Theoretical and Applied Genetics 124: 1305-1314.
10930.	Beecher B and Skinner DZ 2011 Molecular cloning and expression analysis of
	multiple polyphenol oxidase genes in developing wheat (<i>Triticum aestivum</i>) kernels.
10021	Journal of Cereal Science 53: 371-378.
10931.	Beecher BS, Carter AH and See DR 2012 Genetic mapping of new seed-expressed
	polyphenol oxidase genes in wheat (<i>Triticum aestivum</i>). Theoretical and Applied
	Genetics 124: 1463-1473.
10932.	Poole GJ, Smiley RW, Paulitz TC, Walker CA, Carter AH, See DR and Garland-
	Campbell K 2012 Identification of quantitative trait loci (QTL) for resistance to
	Fusarium crown rot (Fusarium pseudograminearum) in multiple assay environments in
	the Pacific Northwestern US. Theoretical and Applied Genetics 125: 91-107.
10933.	Agenbag GM, Pretorius ZA, Boyd LA, Bender CM and Prins R 2012 Identification of
	adult plant resistance to stripe rust in the wheat cultivar Cappelle-Desprez. Theoretical
	and Applied Genetics 125: 109-120.
10934.	Lu QX, Bjornstad A, Ren Y, Asad MA, Xia XC, Chen XM, Ji F, Shi JR and Lillemo M
	2012 Partial resistance to powdery mildew in German spring wheat 'Naxos' is based
	on multiple genes with stable effects in diverse environments. Theoretical and Applied
	Genetics 125: 297-309.
10935.	Gao HD, Zhu FF, Jiang YG, Wu JH, Yan W, Zhang QF, Jacobi A and Cai SB 2012
	Genetic analysis and molecular mapping of a new powdery mildew resistant gene
	<i>Pm46</i> in common wheat. Theoretical and Applied Genetics 125: 967-973.
10936.	Olsen EL et al. Draft manuscript.
10937.	Piarulli L, Gadaleta A, Mangini G, Signorile MA, Pasquini M, Blanco A and Simeone
	R 2012 Molecular identification of a powdery mildew resistance gene on chromosome
	2BS from <i>Triticum turgidum</i> ssp. <i>dicoccum</i> . Plant Science 196: 101-106.
10938.	Simeone R 2012 Personal communication.
10939.	Inoue Y, Mori R, Takahashi Y, Kiguchi S, Enomoto T, Chuma I and Tosa Y 2012
10,00	Identification and molecular mapping of a wheat gene for resistance to an unadapted
	isolate of <i>Colletotrichum cereale</i> . Phytopathology 103: 575-582.
10940.	Kassa MT, Menzies J and McCartney 2012 Genetics and mapping of resistance to
10770.	1 Massa 1711, 1710 nices 3 and 1710 carries 2012. Genetics and mapping of resistance to

	Ustilago tritici in the hexaploid wheat (Triticum aestivum) variety 'AC Foremost'.
	Unpublished abstr.
10941.	Pretorius ZA, Jin Y, Bender CM, Herselman L and Prins R 2012 Seedling resistance to stem rust race Ug99 and marker analysis for <i>Sr2</i> , <i>Sr24 and Sr31</i> in South African wheat cultivars and lines. Euphytica 186: 15-23.
10942.	Mohler V, Bauer C, Schweizer G, Kempf H and Hartl L 2012 A new powdery mildew resistance gene in common wheat derived from cultivated emmer. Draft manuscript.
10943.	Basnet BR, Singh RP, Herrera-Foessel SA, Ibrahim AMH, Huerta-Espino J, Calvo-Salazar V and Rudd JC 2012 Genetic analysis of adult plant resistance to yellow rust and leaf rust in common spring wheat 'Quaiu 3'. Plant Disease 97: 728-736.
10944.	Basnet BR, Singh RP, Herrera-Foessel SA, Ibrahim AMH, Huerta-Espino J and Rudd JC 2013 Identification of genomic regions associated with adult plant resistance to yellow rust and leaf rust in a spring wheat line Quaiu 3. Manuscript.
10945.	Agenbag GM, Pretorius ZA, Boyd LA, Bender CM and Prins R 2012 Identification of adult plant resistance to stripe rust in the wheat cultivar Cappelle-Desprez. Theoretical and Applied Genetics 125: 109-120.
10946.	Tereschenko OY, Pshenichnikova TA, Salina EA and Khlestkina EK 2012 Development and molecular characterization of a novel wheat genotype having purple grain colour. Cereal Research Communications 40: 210-214.
10947.	Herrera-Foessel SA, Huerta-Espino J, Calvo-Salazar V, Lan C and Singh RP 2013 Mapping of a race-specific leaf rust resistance gene in Mexican durum wheat cultivar Atil C2000. Draft manuscript.
10948.	Vy TTP, Hyon G-S, Nga NTT, Inoue Y, Chuma I and Tosa Y 2013 Genetic analysis of host-pathogen incompatibility between <i>Lolium</i> isolates of <i>Pyricularia oryzae</i> and wheat. Journal of General Plant Pathology 80: 59-65.
10949.	Cumagun CJR, Ahn VL, Vy TTP, Inoue Y, Asano H, Hyon G-S, Chuma I and Tosa Y 2012 Identification of a hidden gene in tetraploid wheat using laboratory strains of <i>Pyricularia oryzae</i> produced by backcrossing. Phytopathology 104: 634-640
10950.	Zhang XH, Pan HY and Bai GH 2012 Quantitative trait loci responsible for <i>Fusarium</i> head blight resistance in Chinese landrace Baishanyuehuang. Theoretical and Applied Genetics 125: 495-502.
10951.	Singh S and Bowden RL 2011 Molecular mapping of adult-plant race-specific leaf rust resistance gene in bread wheat. Molecular Breeding 28: 137-142.
10952.	Ghazvini H, Hiebert CW, Zegeye T, Liu SX, Dilawari M, Tsilo T, Anderson JA, Rouse MN, Jin Y and Fetch T 2012 Inheritance of resistance to Ug99 stem rust in wheat cultivar Norin 40 and genetic mapping of <i>Sr42</i> . Theoretical and Applied Genetics 125: 817-824.
10953.	Bariana HS 2013 Personal communication.
10954.	Williams C 2013 Personal communication.
10955.	Bariana HS 2013 Personal communication
10956.	Nui ZX, Puri KD, Chao SM, Jin Y, Steffenson BJ, Maan SS, Xu SS and Zhong SB 2013 Genetic and molecular mapping of crown rust resistance in common wheat. Manuscript.
10957.	Huang XQ and Roder MS 2011 High-density genetic and physical bin mapping of wheat chromosome 1D reveals that the powdery mildew resistance gene <i>Pm24</i> is located in a highly recombinogenic region. Genetica 139: 1179-1187.

10958.	Takumi S, Koyama K, Fujiwara K and Kobayashi F 2011 Identification of a large deletion in the first intron of the <i>Vrn-D1</i> locus, associated with the loss of vernalization
	requirement in wild wheat progenitor <i>Aegilops tauschii</i> Coss. Genes and Genetic Systems 86: 183-196.
10959.	Kulwal P, Ishikawa, Benscher D, Feng ZY, Yu LX, Jadhav A, Mehetre S and Sorrells
	ME 2012 Association mapping for pre-harvest sprouting resistance in white winter
	wheat. Theoretical and Applied Genetics 125: 793-805.
10960.	Crook AD, Friesen TL, Liu ZH, Ojiambo and Cowger C 2012 Novel necrotrophic
	effectors from Stagonospora nodorum and corresponding host severities in winter
	wheat germplasm in the southeastern United States. Phytopathology 102: 498-505.
10961.	Hu TZ, Ki HJ, Xie CJ, You MS, Yang ZM, Sun QX and Liu ZY 2008 Molecular
	mapping and chromosomal location of powdery mildew resistance gene in wheat
100.62	cultivar Tangmai 4. Acta Agronomica Sinica 34: 1193-1198.
10962.	Powell NM, Lewis CM, Berry ST, MacCormack R and Boyd LA Stripe rust resistance
	genes in the UK winter wheat cultivar Claire. Theoretical and Applied Genetics 126: 1599-1612.
10963.	Bariana HS 2013 Personal communication.
10964.	Bansal U 2013 Personal communication.
10965.	Singh RP, Herrera-Foessel SA, Huerta-Espino J, Lan CX, B. Basnet R, Bhavani S &
	Lagudah ES 2013 Pleiotropic gene Lr46/Yr29/Pm39/Ltn2 confers slow rusting, adult
	plant resistance to wheat stem rust. Manuscript under preparation.
10966.	Zhou XL, Wang MN, Chen XM, Lu Y, Kang ZS and Jing JX 2013 Identification of
	<i>Yr59</i> conferring high-temperature adult-plant resistance to stripe rust in wheat
	germplasm PI 178759. Draft manuscript.
10967.	Wang MN, Chen XM, Xu LS, Cheng P and Bockelman HE 2012. Registration of 70
	common spring wheat germplasm lines resistant to stripe rust. Journal of Plant
100.00	Registrations 6:104-110.
10968.	Herrera-Foessel SA, Singh RP, Huerta-Espino J, Calvo-Salazar V, Lan CX and
	Lagudah ES 2013 <i>Yr60</i> : A gene for moderate resistance to stripe rust in wheat. Draft manuscript.
10969.	Park RF, Mohler V, Nazari K and Singh D 2013 Characterization and mapping of
10909.	gene <i>Lr73</i> conferring seedling resistance to <i>Pucciniia triticina</i> in common wheat.
	Draft manuscript.
10970.	Zhou XL, Han DJ, Chen XM, Gou HL, Guo SJ, Rong L, Wang QL, Wang LL and
	Kang ZS 2013 Characterization and molecular mapping of stripe rust resistance gene
	Yrdp34 in winter wheat cultivar Pindong 34. Draft manuscript.
10971.	Fahim M, Mechanicos A, Ayala-Navarrete, Haber S and Larkin PJ 2012 Resistance to
	Wheat Streak Mosaic Virus – a survey of resources and sevelopment of molecular
	markers. Plant Pathology 61: 425-440.
10972.	Lu QX, Szabo-Hever A, Bjornstad A, Lillimo M, Semagn K, Mesterhazy A, Ji F, Shi
	JR and Skinnes H 2011 Two major quantitative trait loci are required to counteract the
	increased susceptibility to Fusarium head blight of the <i>Rht-D1b</i> dwarfing gene in
10072	wheat. Crop Science 51: 2430-2438.
10973.	Fang TL, Campbell GG, Liu ZY, Chen XM, Wan AN, Li S, Liu ZJ, Cao SG, Chen YH,
	Bowden RL, Carver BF and Yan LL 2011 Stripe rust resistance in wheat cultivar
	Jagger is due to <i>Yr17</i> and a novel resistance gene. Crop Science 51: 2455-2465.

10974.	Millet E, Rong J-K, Qualset CO, McGuire PE, Bernard M, Sourdille P and Feldman M 2013. Production of chromosome-arm substitution lines of wild emmer in common wheat. Euphytica 190: 1-17.
10975.	Njau P, Bhavani S, Huerta-Espino, Keller B and Singh RP 2013 Identification of QTL associated with durable adult plant resistance to stem rust race Ug99 in wheat cultivar 'Pavon 76'. Euphytica 190: 33-34.
10976.	Liu YY, Zhang LL, Thompson IA, Goodwin SB and Ohm HW 2013 Molecular mapping re-locates the <i>Stb2</i> gene for resistance to Septoria tritici blotch derived from cultivar Veranopolis on wheat chromosome 1BS. Euphytica 190: 145-156.
10977.	Shcherban AB, Effremova TT and Salina EA 2012 Identification of a new <i>Vrn-B1</i> allele using two near-isogenic wheat lines with difference in heading time. Molecular Breeding 29: 675-685.
10978.	Milec Z, Tomkova L, Sumikova T and Pankova K 2012 A new multiplex PCR test for the determination of <i>Vrn-B1</i> alleles in bread wheat (<i>Triticum aestivum</i> L.). Molecular Breeding 30: 317-323.
10979.	Li Q, Huang J, Hou L, Liu P, Jing JX, Wang BT and Lang ZS 2012 Genetic and molecular mapping of stripe rust resistance gene in wheat- <i>Psathyrostachys huashanica</i> translocation line H9020-1-6-8-3. Plant Disease 96: 1482-1487.
10980.	German SE and Kolmer JA 2012 Leaf rust resistance in selected Uruguayan common wheat cultivars with early maturity. Crop Science 52: 601-608.
10981.	Valdez VA, Byrne PF, Lapitan NLV, Peairs FB, Bernardo A, Bai GH and Haley SD 2012 Inheritance and genetic mapping of Russian wheat aphid resistance in Iranian wheat landrace accession PI 626580. Crop Science 52: 676-682.
10982.	Lu HJ, Kottke R, Devkota R, St. Amand P, Bernardo A, Bai GH, Byrne P, Martin TJ, Haley SD and Rudd JC 2102 Consensus mapping and identification of markers for marker-assisted selection of <i>Wsm2</i> in wheat. Crop Science 52: 720-728.
10983.	Yu GT, Wang T, Anderson KM, Harris MO, Cai XW and Xu SS 2012 Evaluation and haplotype analysis of elite synthetic hexaploid wheat lines for resistance to Hessain fly. Crop Science 52: 752-763.
10984.	Kosellek C, Pillen K, Nelso JC, Weber WE and Saal B 2013 Inheritance of field resistance to Septoria tritici blotch in the wheat doubled haploid population Solitar × Mazurka. Euphytica 194: 161-176.
10985.	Vikas VK, Tomar SMS, Sivasamy M, Kumar J, Jayaprakash, Kumar A, Peter J, Nisha R and Punniakotti E 2013 Hybrid necrosis in wheat: evolutionary significance or potential barrier for gene flow? Euphytica 194: 261-275.
10986.	Singh SK, Singh AM, Jain N, Singh GP, Ahlawat AK & Ravi I 2013 Molecular characterization of vernalization and photoperiod genes in wheat varieties from different agro-climatic zones in India. Cereal Research Communications 41: 376-387.
10987.	Periyannan S, Moore J, Ayliffe M, Bansel U, Wang XJ, Huang L, Deal K, Luo MC, Kong XY, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J and Lagudah E 2013 The gene <i>Sr33</i> , an ortholog of barley <i>Mla</i> genes, encodes resistance to wheat stem rust race Ug99. Science: 341: 786-788.
10988.	Saontenac C, Zhany WJ, Salcedo A, Rouse MN, Trick HN, Akhunov E and Dubcovsky J 2013 Identification of wheat gene <i>Sr35</i> that confers resistance to UG99 stem rust race group. Science 341: 783-786.
10989.	Yamamori M and Yamamoto K 2011 Effects of two novel Wx-A1 alleles of common

	wheat (<i>Triticum aestivum</i> L.) on amylase and starch properties. Journal of Cereal Science 54: 229-235.
10990.	Yamamori M and Guzman C 2013 SNPs and an insertion in five <i>Wx-A1</i> alleles as factors for variant Wx-A1 protein in wheat. Euphytica 192: 325-338.
10991.	Milec Z, Sumikova T, Tomkova L and Pankova K 2013 Distribution of different <i>Vrn-B1</i> alleles in hexaploid spring wheat germplasm. Euphytica 192: 371-378.
10992.	Mergoum M, Harilal VE, Singh PK, Adhikari TB, Kumar A, Ghavami F, Elias E, Alamri MS and Kianian SF 2013 Genetic analysis and mapping of seedling resistance to Septoria tritici blotch in 'Steele-ND'/'ND 736' bread wheat population. Cereal Research Communications 41: 199-210.
10993.	Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson JC and Buerstmayr H 2012 Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from <i>Triticum dicoccum</i> × <i>Triticum durum</i> . Theoretical and Applied Genetics 125: 1751-1765.
10994.	Xue F, Wang CY, Li C, Duan XY, Zhou YL, Zhao NJ, Wang YJ and Ji WQ. 2012 Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with <i>Pm24</i> . Theoretical and Applied Genetics 125: 1425-1432.
10995.	Hagenblad J, Asplund L, Balfourier F, Ravel C and Leino MW 2012 Strong presence of the high grain protein content allele of <i>Nam-B1</i> in Fennscandian wheat. Theoretical and Applied Genetics 125: 1677-1686.
10996.	Zhang J, Wang YY, Wu SW, Yang JP, Liu HW and Zhou Y 2012 A single nucleotide polymorphism at the <i>Vrn-D1</i> promoter region in common wheat is associated with vernalization response. Theoretical and Applied Genetics 125: 1697-1704.
10997.	Goates BJ 2012 Identification of new pathogenic races of common bunt and dwarf bunt fungi and evaluation of known races using an expanded set of differential wheat lines. Plant Disease 96: 361-369.
10998.	Chang C, Zhang HP, Feng JM, Yin B, Si HQ and Ma SX 2010 Identifying alleles of <i>Viviparous-1B</i> associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Molecular Breeding 25: 481-490.
10999.	Chang C, Feng JM, Si HQ, Yin B, Zhang HP and Ma CX 2010 Validating a novel allele of <i>viviparous-1</i> (<i>Vp-1Bf</i>) associated with high seed dormancy of Chinese wheat landrace Wanxianbaimaizi. Molecular Breeding 25: 517-523.
11000.	Sun YW, Jones HD, Yang Y, Dreisigacker S, Li SM, Chen XM, Shewry PR and Xia LQ 2012 Haplotype analysis of <i>Viviparous-1</i> gene in CIMMYT bread wheat germplasm. Euphytica 186: 25-43.
11001.	Basnet BJ, Glover KD, Ibrahim AMH, Yen Y and Chao SM 2012 A QTL on chromosome 2DS of 'Sumai 3' increases susceptibility to <i>Fusarium</i> head blight in wheat. Euphytica 186: 91-101.
11002.	Ansari MJ, Kumar R, Singh K and Dhaliwal HS 2012 Characterization and molecular mapping of EMS-induced brittle culm mutants of diploid wheat (<i>Triticum monococcum</i> L.). Euphytica 186: 165-176.
11003.	Dumalasova V, Simmonds J, Bartos P and Snape J 2012 Location of genes for common bunt resistance in the European winter wheat cv. Trintella. Euphytica 186: 257-264.
11004.	Maxwell JJ, Lyerly JH, Srnic G, Murphy JP, Cowger C, Parks R, Marshall D, Brown-

	Guerdira G and Miranda L 2012 MlNCD1: A novel Aegilops tauschii-derived
	powdery mildew resistance gene identified in common wheat. Crop Science 52: 1162-
	1170.
11005.	Zhang XH, Bai Gh, Bochus W, Ji XJ and Pan HY 2012 Quantitative trait loci for
	Fusarium head blight resistance in U.S. hard winter wheat cultivar Heyne. Crop
	Science 52: 1187-1194.
11006.	Seifers DL, Martin TJ and Haber S 2013 Temperature-sensitive resistance to wheat
	streak mosaic virus in CO960333 and KS06HW79 wheat. Plant Disease 97: 983-987.
11007.	Nazari K 2013 First report of resistance of wheat line Avocet 'S' to stripe rust caused
	by Puccinia stritiformis f. sp. tritici (Pst) in Syria. Plant Disease 97: 996.
11008.	Hao YF, Cambron SE, Chen SB, Wang YY, Bland DE, Buntin GD and Johnson JW
	2013 Characterization of new loci for Hessian fly resistance in common wheat.
	Theoretical and Applied Genetics 126: 1067-1076.
11009.	Fu BS, Chen Y, Li n, Ma HQ, Kong ZX, Zhang LX, Jia HY and Ma ZQ 2013 pmx: a
	recessive powdery mildew resistance gene at the <i>Pm4</i> locus identified in wheat
	landrace Xiaohongpi. Theoretical and Applied Genetics 126: 913-921.
11010.	Rouse M et al. 2013 Personal communication.
11011.	Liu WX, Danilova TV, Rouse MN, Bowden RL, Friebe B, Gill BS and Pumphrey MO
11011.	2013 Development and characterization of of a compensating wheat- <i>Thinopyrum</i>
	intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99).
	Theoretical and Applied Genetics 126: 1167-1177.
11012.	Olsen EL, Rouse MN, Pumphrey MO, Bowden RL, Gill BS and Poland JA 2013
11012.	Simultaneous transfer, introgression, and genomic localization of genes for resistance
	to stem rust race TTKSK (UG99) from <i>Aegilops tauschii</i> to wheat. Theoretical and
	Applied Genetics 126: 1179-1188.
11013.	Ning SZ, Wang N, Sakuma S, Pourkheirandish M, Wu JH, Matsumoto, Koba T and
11015.	Komatsuda T 2013 Structure, transcription and post-transcriptional regulation of the
	bread wheat ortholgs of the barley cleistogamy gene <i>Cly1</i> . Theoretical and Applied
	Genetics 126: 1273-1282.
11014.	Li WL, Zhu HL, Challa GS and Zhang ZZ 2013 A non-additive interaction in a single
11011.	locus causes a very short root phenotype in wheat. Theoretical and Applied Genetics
	126: 1189-1200.
11015.	Terracciano I, Maccaferri M, Bassi F, Mantovani P, Sanguineti MC, Salvi S, Simkova
11015.	H, Dolezel J, Massi A, Ammar K, Kolmer J and Tuberosa R 2013 Development of
	COS-SNP and HRM markers for high-throughput and reliable haplotype-based
	detetection of $Lr14a$ in durum wheat (<i>Triticum durum</i> Desf.) Theoretical and Applied
	Genetics 126: 1077-1101.
11016.	Li Y, Xiao J, Duan J, Liu Y, Ye X, Zhang S, Gu Y, Zhang L, Jia J and Kong X 2012
11010.	A tandom segmental duplication (TSD) in green revolution gene <i>Rht-D1b</i> region
	underlies plant height variation. New Phytologist 196: 282-291.
11017.	Wilhelm EP, Howells RH, Al-Kaff N, Jia JZ, Baker C, Leverington-Waite MA,
11017.	Griffiths S, Greeland AJ, Boulton MI and Powell W 2013 Genetic characterization
	and mapping of the <i>Rht-1</i> homeologs and flanking markers in wheat. Theoretical and
11010	Applied Genetics 126: 1321-1336.
11018.	Li CL, Chen MS, Chao SM, Yu JM and Bai GH 2013 Identification of a novel gene,
	H34, in wheat using recombinant inbred lines and single nucleotide polymorphism

	markers. Theoretical and Applied Genetics 126: 2065-2071.
11019.	Singh S, Singh RP, Bhavani S, Huert-Espino J and Lopez-Vera EE 2013 QTL
11019.	
	mapping of slow-rusting, adult plant resistance to race Ug99 of the stem rust fungus in
11000	PBW343/Muu RIL population. Theoretical and Applied Genetics 126: 1367-1375.
11020.	Yang EN, Rosewarne GM, Herrera-Foessel SA, Huerta-Espino J, Tang ZX, Sun CF,
	Ren ZL and Singh RP 2013 QTL analysis of the spring wheat 'Chapio' identifies
	stable stripe rust resistance despite inter-continental genotype × environment
	interactions. Theoretical and Applied Genetics 126: 1721-1732.
11021.	Kolmer JA, Lin M and Bai G 2012 Genetics of leaf rust resistance in the winter wheat
	CI 13227. Crop Science 52: 2166-2172.
11022.	Liu SY, Christopher MD, Griffey CA, Hall MD, Gundrum PG and Brooks WS 2102
	Molecular characterization of resistance to Fusarium head blight in U.S. soft red
	winter wheat breeding line VA00W-38. Crop Science 52: 2283-2292.
11023.	Lu Y, Wang MN, Chen XM, See D, Chao XM and Jing JX 2013. Identification of
	Yr62 and a small effect QTL for high-temperature adult-plant resistance to stripe rust in
	the spring wheat germplasm PI 192252. Draft manuscript.
11024.	Wang MN, Chen XM, Xu LS, Cheng P and Bockelman HE 2012. Registration of 70
	common spring wheat germplasm lines resistant to stripe rust. Journal of Plant
	Registrations 6: 104-110.
11025.	Hao YF, Chen ZB, Wang YY, Bland D, Parks R, Cowger C and Johnson J 2102
	Identification of <i>Pm8</i> suppressor at the <i>Pm3</i> locus in soft red winter wheat. Crop
	Science 52: 2438-2445.
11026.	Zhan HX, Guo HJ, Zhang XJ, Jia JQ, Li X, Liu C, Yang ZJ and Chang ZJ 2014
	Chromosomal location and comparative genomics analysis of powdery mildew
	resistance gene <i>PmCH86</i> in a putative wheat- <i>Thinopyrum ponticum</i> introgression line.
	Draft manuscript.
11027.	Bansal U and Bariana HS 2013 Personal communication.
11028	Zhao ZH, Sun HG, Song W, Lu M, Huang LF, Wang ZM and Li HJ 2013 Genetic
	analysis and detection of the gene <i>MlLX99</i> on chromosome 2BL conferring resistance
	to powdery mildew in the wheat cultivar Liangxing 99. Theoretical and Applied
	Genetics 126: 3081-3089.
11029.	Song W, Sun HG, Zhang D, Sun YL, Wang XM and Li HJ 2014 Genetic analysis and
	detection of the gene <i>PmLX99</i> on chromosome 2BL conferring resistance to powdery
	mildew in the wheat cultivar Liangxing 99. Unpublished supplement to Reference
	{11028}.
11030.	Cheng P, Xu LS, Wang MN, See D and Chen XM 2014 Molecular mapping of genes
	Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat
	accessions PI 331260 and PI 480016. Draft manuscript.
11031.	Bansal U 2014 Personal communication.
11032.	Bansal U 2014 Personal communication.
11033.	Li Y, Niu YC and Chen XM 2009. Mapping a stripe rust resistance gene YrC591 in
	wheat variety C591 with SSR and AFLP markers. Theor Appl Genet 118: 339-346.
11034.	Li ZF, Singh RP, Singh S, Lopez-Vera EE and Huerta-Espino J 2013 Genetics of
	resistance to yellow rust in PBW343 × Kenya Kudiu recombinant inbred line
	population and mapping of a new resistance gene <i>YrKK</i> . Theoretical and Applied
	Genetics 32: 821-829.

11035.	Long Voy EE Nolson C Cinch DD Dognat DD Holov CD Dhovoni C Hyort Emino
11055.	Lopez-Vera EE, Nelson S, Singh RP, Basnet BR, Haley SD, Bhavani S, Huert-Espino
	J, Xoconostle-Cazares BG, Medrano RR, Rouse MN and Singh S 2014 Resistance to
	stem rust UG99 in six bread wheat cultivars maps to chromosome 6DS. Theoretical
11006	and Applied Genetics 127: 231-239.
11036.	Tang XQ, Shi D, Xu J, Li YL, Li WJ, Ren ZL and Fu TH 2014 Molecular cytogenetic
	characteristics of a translocation line between common wheat and <i>Thinopyrum</i>
	intermedium with resistance to powdery mildew. Euphytica 197: 201-210.
11037.	Niu ZX, Klindworth DL, Friesen TL, Chao SM, Jin Y, Cai XW and Xu SS 2011
	Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted
	chromosome engineering. Genetics 187: 1011-1021.
11038.	Xing LF, Wang CF, Xia XC, He ZH, Chen WQ, Liu TG, Li ZF and Liu DQ 2014
	Molecular mapping of leaf rust resistance gen <i>LrFun</i> in Romanian wheat line Fundulea
	900. Molecular Breeding 33: 931-937.
11039.	Kamran A, Iqbal M, Navabi A, Randahawa H, Pozniak C and Spaner D 2013
	Earliness per se QTLs and their interaction with photoperiod insensitive allele <i>Ppd</i> -
	$D1a$ in the Cutler \times AC Barrie spring wheat population. Theoretical and Applied
	Genetics 126: 1965-1976.
11040.	Singh A, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Campbell HL, Singh D,
	Bhavani S, Fetch T and Clarke F 2013 Identification and mapping in spring wheat of
	genetic factors controlling stem rust resistance and the study of their epistatic
	interactions across multiple environments. Theoretical and Applied Genetics 126:
	1951-1964.
11041.	Xue SL, Xu F, Li GQ, Zhou Y, Lin MS, Gao ZX, Su XH, Xu XW, Jiang G, Zhang SA,
	Jia HY, Kong ZX, Zhang LX and Ma ZQ 2013 Fine mapping <i>TaFLW1</i> , a major QTL
	controlling flag leaf width in bread wheat (<i>Triticum aestivum</i> L.) Theoretical and
	Applied Genetics 126: 1941-1049.
11042.	Zhang H, Xia XC, He ZH, Li X, Li ZF and Liu DG 2011 Molecular mapping of leaf
	rust resistance gene <i>LrBi16</i> in Chinese wheat cultivar Bimai 16. Molecular Breeding
	28: 527-534.
11043.	Zhou HX, Xia XC, He YH, Li X, Wang CF, Li ZF and Liu DQ 2013 Molecular
	mapping of leaf rust resistance gene <i>LrNJ97</i> in Chinese wheat line Neijiang 977671.
	Theoretical and Applied Genetics 126: 2141-2147.
11044.	Randahawa H, Asif M, Pozniak C, Clarke JM, Graf RF, Fox SL, Humphreys G, Knox
11077.	RE, DePauw RM, Singh AK, Cuthbert RD, Hucl P and Spaner D 2013 Application of
	molecular markers to wheat breeding in Canada. Plant Breeding 132: 458-471.
11045.	Peterson S, Lyerly JH, Worthington ML, Parks R, Cowger C, Marshall DS, Brown-
11075.	Guedira G and Murphy JP 2014 Mapping of novel powdery mildew resistance gene,
	PmNC-S16 introgressed from Aegilops speltoides into soft red winter wheat. Draft
	manuscript.
11046.	Tagle AG, Chuma I and Tosa Y 2014 <i>Rmg7</i> , a new gene for resistance to <i>Triticum</i>
11040.	isolates of <i>Pyricularia oryzae</i> identified in tetraploid wheat. Manuscript.
11047	r r
11047.	Sun YW, Jones HD, Yang Y, Dreisigacker S, Li SM, Chen XM, Shewry PR and Xia
	LQ 2012 Haplotype analysis of <i>Viviparous-1</i> gene in CIMMYT elite bread wheat
	germplasm. Euphytica 186: 25-43.