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Using BSMV–VIGS for functional genomics in wheat.

Steven Scofield, USDA–ARS Crop Production and Pest Control Unit, West Lafayette, IN 47907, USA.

Our laboratory has gained significant experience using the barley stripe mosaic virus system for virus-induced gene 
silencing (BSMV-VIGS) as a tool for functional genomics in wheat.  This presentation will summarize our experiences 
using the BSMV-VIGS system to functionally identify genes with essential roles in disease resistance pathways and, in 
particular, it will focus on the design considerations for successful VIGS experiments.

Development of resources for reverse-genetic analysis in Triticum monococcum.

Anantharama Rishi and Shahryar F. Kianian, Department of Plant Sciences, North Dakota State University, Fargo, ND 
58105, USA.

Reverse genetics is a powerful tool to discover gene function by identifying modifications in specific genes.  Muta-
genized populations are generated using either chemical, physical, or biological methods and screened for lesions for the 
desired gene of interest to identify its functional role.  The goal of this project is to develop a mutagenized population of 
Triticum monococcum and screening systems for lesions in genes of interest using DNA pooling and PCR-based ap-
proaches as a reverse-genetic resource for the scientific community.  We have generated mutagenized populations using 
1,2,3,4-diepoxybutane (DEB) or trimethylpsoralen along with a UV treatment (TMP/UV) as a pilot study with chemi-
cal concentrations that lead to 20–25% survival rates.  Experiments were conducted to identify the relative efficiency of 
these chemicals in a) creating mutations and b) detecting deletions/lesions using forward and reverse-genetic approaches.

We have generated approximately 1,000 M2 families from each chemical treatment.  Initial observations from 
five germinating seeds per M1 plant indicated 2% albinos in 250 M2 families per chemical treatment.  DNA was isolated 
using a filter-based method from individual plants and, currently, is pooled to 1:8 and 1:16 times and used for screening 
using different methods.  A total of 424 DEB-treated, M2 families were advanced to the M3 generation to observe visible 
mutant phenotypes and determine forward mutation frequency for this chemical treatment.  Many phenotypic mutants, 
such as dwarf, early and late flowering, bushy, oligoculm, small spike, purple plants, and disease mimic were observed in 
this M3 population.  The percent of phenotypic mutants in the M2 as observed in the M3 families was 0.94% to 8.02 % for 
ten different phenotypes.  The results of the screening for lesions in the mutagenized population will be presented, which 
will strengthen the use of this approach for developing reverse-genetic resources in wheat.

Poster 1.  A detailed, comparative sequence analysis on the HMW-glutenin locus regions of eight 
genomes from diploid and polyploid wheats.
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Wheat is the most widely grown crop worldwide and feeds one-third of the world’s population.  As a result, wheat is 
foremost among the world’s crops both in regards to its importance as a staple of mankind and its economic significance.  
Despite several successes in sequencing several plant genomes, the complex wheat genome might still represent chal-
lenges in genome-sequencing projects.  Compared to most other cereals, bread wheat (Triticum aestivum) has an ex-
tremely large genome (~16,000 Mb); more than 30-fold greater than the rice genome.  Furthermore, bread wheat is an al-
lohexaploid species consisting of three related subgenomes (A, B, and D).  To study the structural organization of wheat 
genomes, we sequenced large genomic regions harboring HMW-glutenin genes from eight Triticeae genomes including 
the D genome from diploid Ae. tauschii, the Am genome from diploid T. monococcum subsp. monococcum, the A and B 
genomes from tetraploid T. turgidum, the A, B, and D genomes from hexaploid wheat, and the H genome from barley.  
The in-depth sequencing of the HMW-glutenin locus regions allowed us to compare sequence changes among the three 




