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Wheat chemistry and quality improvement.

Roberto J. Peña.

Quality characterization/screening for wheat quality improvement.  At CIMMYT, wheat experimental lines are 
tested for quality attributes and classified according to its potential end-use.  Breeders and agronomists receive quality 
data, a classification of the lines according to their potential end use, and recommendations of the best sources of 
quality.  This action helps breeders to identify lines to be used as quality sources in new crosses and allows screening 
and selection of quality-desirable lines throughout the breeding process.  The wheat quality classification we use was 
developed based on observed and documented relationships between specific quality traits and end-use quality (bread, 
cookies, noodles, pasta, etc); actual observation of wheat-based food processing in different countries; and consultations 
with NARS.

crop improvement, quality testing/screening.  Approximately 18,700 entries were tested for wheat quality characteri-
zation using a few rapid small-scale tests to full-quality analysis.  The tested materials included late-segregating lines 
(tested in Obregon), advanced lines (from both the spring and winter wheat programs), elite lines for candidates to inter-
national nurseries, and lines from national programs and special projects in breeding and agronomy (tested in El Batan). 

Breeders received recommendations on the best quality sources (for diverse uses) to include in new crosses.  We 
also suggested which lines to advance or include in international nurseries or to consider for cultivar registration (in the 
case of National programs). 

In addition, SDS–PAGE to determine Glu-1/Glu-3 glutenin composition and T1B·1R translocation status was 
applied to 8,000 bread and 4,175 durum wheat samples.  The samples analyzed for glutenin composition were part of the 
wheat-improvement programs and special projects, including theses work of graduate students.

sources of grain quality.  Identifying the best sources of quality for new crosses has been an effective strategy to com-
bine grain yield and quality.  The proportion of lines having acceptable to excellent quality in the CBRF (2007–08) and 
CBBWIR (2007–08) populations were 40.2% and 27.1% , respectively.  The top 10 best sources of gluten extensibility 
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table 1.  Best sources of quality of the crossing block populations sown in Obregon, Mexico in 2007–08 (Glutenin 
strength rated as strong (S) or medium strong (MS)).

cross
 

pedigee

 
Gluten 

strength

hmw-glutenins lmw-glutenins
Glu- 
A1

Glu-
B1

Glu-
D1

Glu-
A3

Glu-
B3

Glu-
D3

cBBwir 2007–08

Juchi F2000 TC920338-S-9C-04R-1C-0R-
1C-0R S 2* 7+9 5+10 e c a

CHEN/Ae. tauschii 
//2*Weaver/3/
Oasis/5*BORL95

CMSS99M00619S-040M-
030Y-030M-15Y-1M-0Y S 1 7*+8 5+10 b d b

Waxwing*2/Varis
CGSS04Y00020T-099M-
099Y-099ZTM-099Y-099M-
3WGY-0B

MS 2* 7+9 5+10 c h b

Kingbird CMSS99M00216S-040M-
030Y-030M-16Y-2M-0Y S 2* 17+18 5+10 b h b

Kiritati//Attila*2/Pastor CGSS02Y00142S-099M-
099Y-099M-35Y-0B S 1 17+18 5+10 c i b

Kiritati//
PBW65/2*SERI.1B

CGSS02Y00139S-099M-
099Y-099M-14Y-0B S 1 17+18 5+10 c i b

3570  MS 1 7+8 5+10 c g a

Waxwing*2/Brambling
CGSS01B00053T-099Y-
099M-099M-099Y-099M-
22Y-0B

MS 2* 7* 5+10 c b b

Waxwing*2/Tukuru
CGSS01B00058T-099Y-
099M-099M-099Y-099M-
12Y-0B

MS 2* 7* 5+10 c b b

Whear/Sokoll
CMSS04Y00201S-099Y-
099ZTM-099Y-099M-
11WGY-0B

MS 1 13+16 2+12 c b c

cBrf 2007–08
INIA Churrinche  S 2* 7+8 5+10 a b a

Attila*2/PBW65//Berkut
CMSA01M00074S-040P0M-
030ZTM-040SY-040M-35Y-
0M-0SY

S to MS 2* 17+18 2+12 c g b

Whear/Vivitsi/3/80.1/3*
Batavia//2*WBLL1

CGSS03B00079T-099Y-
099M-099Y-099M-13WGY-
0B MS 2* 7+9 5+10 d h b

ND643//2*Attila*2/
Pastor

CGSS02B00113T-099B-
099Y-099M-099Y-099M-
7WGY-0B

MS 2* 17+18 5+10 e h c

ND643/2*WBLL1
CGSS02B00105T-099B-
099Y-099M-099Y-099M-
1WGY-0B

MS 2* 7+9 5+10 c h b
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(a mayor challenge in wheat quality improvement) from each crossing block population are shown in Table 1 (p. 111).  
Several of these lines showed HMW-glutenin subunits 1 or 2*, 18+18 or 7+8, and 5+10, and a predominance of Glu-B3 
LMW-glutenin subunits h, b, and g, which have shown to be the most beneficial for gluten extensibility. 

To continue with the emphasis on quality improvement, two quality CB trials (CBBWIRIQ and CBRFIQ) including the 
best sources of gluten strength and extensibility were prepared (58 lines for Ravi Singh and 92 lines for Yann Manes) to 
facilitate breeders the use of the best sources of quality in new crosses during the Y. 08-09 crop cycle. 

Quality methodologies.  In order to satisfy the quality testing/screening needs of both the spring and winter wheat pro-In order to satisfy the quality testing/screening needs of both the spring and winter wheat pro-
grams comprised within the GWP of CIMMYT and those of collaborating partners, it is necessary to use reliable analyti-
cal methods that offer high throughputs.  During 2008, accelerated protocols were developed to increase the number of 
lines analyzed for dough rheological properties by at least 100%.

alveograph.  Thanks to the acquisition of the modern Alveo-Consitograph in 2006, we standardized and modi-
fied the methodology used with the small-scale (60-g flour) old alveographs in such away that the number of 
samples tested per day increased from 20–25 to 45–50 in 2008. 

Bread-making test.  Modifications in the bread-making protocol and the more efficient use of equipment and 
staff allowed us to increase from 30 to 50 the number of lines tested for bread-making properties in 2008.  
This action allowed us to offer bread-making quality data again, after 3 years of not being able to perform 
this test due to the loss of one staff member.

mixolab.  An accelerated method for the use of the Chopin–Mixolab as tool to evaluate/screen for gluten and 
for starch properties was developed.  The new accelerated Chopin-Mixolab protocol allows determining 
dough (gluten) mixing properties as well as starch pasting properties using one, single, small flour sample.  
The accelerated protocol also was found to have a highly significant correlation with Falling Number, a 
test determining grain sprouting.  Therefore, the Mixolab protocol has a plus when screening wheat lines 
sown under high-rainfall conditions.  The accelerated Mixolab protocol has been submitted as a section of 
the Mixolab Handbook, which will be distributed internationally (Peña and Posadas-Romano, Submitted in 
2008).

don analysis.  The low-cost (50–60% lower) analytical test, based on a commercial fluorimetric kit proto-
col (Fluoroquant) for determining DON concentration developed in 2007, was validated using wheat lines 
cultivated in Uruguay, Paraguay, and Batan.  An HPLC analysis of DON extracts obtained with the commer-
cial test kit and low-cost extraction protocols were very similar (R2 > 0.96 was obtained in all comparisons).  
Gabriel Posadas from the Wheat Chemistry and Quality Laboratory will travel to Uruguay in 2009 to imple-
ment the low-cost protocol in the laboratory of INIA-La Estanzuela by in early 2009.  With this we complete 
our responsibility in the Fusarium–toxin analysis subproject of the INIA-Spain-Procisur-CIMMYT project.

advances in the development of nirs calibrations.  In 2008, NIRS was used in both Obregon (breeding 
programs; Conservation Agriculture; Agronomy-Harvest Plus) and El Batan for hardness, moisture, grain 
protein, and straw-N.

Durum wheat breeding.

Karim Ammar.

summary.  The competitiveness and global relevance of the germ plasm produced in the last two years have been 
clearly and successfully enhanced.  We have been able to develop and identify lines combining high yield potential, 
good performance under water-limited conditions, and good-to-excellent functional quality attributes.  The situation with 
regards to low yellow color in CIMMYT’s germ plasm has been turned around, with 75–80% of the lines evaluated in 
the last two years showing acceptable-to-excellent color.  More importantly, our use of as many sources of resistance to 
leaf rust as possible, since the appearance of the BBG/BN race in 2001, has provided us with sufficient genetic variabil-
ity to be able to withstand unaffected the loss of one source of resistance (Lr27+Lr31) with the appearance of a new race 
BBG/BP in 2008.  This loss did not affect our capacity to distribute highly improved germ plasm in sufficient numbers.  
Marker-assisted selection has enabled us to start pyramiding leaf rust resistance genes not present in durum wheat (Lr19 
and Lr47) and accumulating them on top of other effective genes present in durum wheat, including Lr14a for which 
reliable flanking markers are now available.  Marker use also has allowed us to transfer stem rust resistance genes into 
durum backgrounds and will help us address more effectively, in the medium term, the stem rust vulnerability of our 
germ plasm in Ethiopia.  Finally, our interaction with the Tunisian NARS has enhanced our capacity to effectively ad-
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dress the susceptibility of our germ plasm 
to Septoria tritici.

stem rust screening in Kenya and ethio-
pia.  For the second year (2008), we have 
sent an extensive collection of advanced 
lines (candidates for next international 
nurseries), crossing parents, and special 
genetics stocks to be screened in the off-
season for their reaction to stem rust at 
the EARI Debre-Zeit station in Ethiopia.  
This year, the epidemic development of 
the disease was hampered by drought and 
established late, resulting in the data be-
ing unreliably positive, with a very high 
proportion of lines with low infection reac-
tions (Table 2).  In comparison, the 2007 
off-season was characterized by an intense 
epidemic and resulted in an extremely low 
frequency of lines showing low infection 
reactions (~2.2%).  In addition, we are 
considering the reaction from our second-
ary screening at Njoro in Kenya were a 
subset of the promising lines from the 
2007 Debre-Zeit screening were evaluated 
in 2008.  Although all of the lines with 
low reactions at Debre Zeit in 2007 were 
resistant in Njoro, many of those resist-
ant in Njoro did not hold their resistance 
in Debre-Zeit, which is consistent with 
the belief that the main stem rust race in 
Kenya is Ug99vir Sr24+, whereas in Ethiopia, 
there must be additional races specifically 
virulent on durum wheat (avirulent on 
bread wheat) that overcome most of the 
resistance effective in Kenya, confirming 
the absolute need to work in Ethiopia, not 
Kenya, for durum wheat.  Based on all the 
results and information at hand, we were 
able to identify lines that may show some 
promise in terms of widely effective resist-
ance to stem rust, in both Ethiopia and 
Kenya (Table 2).

Septoria tritici screening in tunisia.  A 
relatively lower incidence of S. tritici was 
seen at the Tunisian hot spot of Béja (IN-
RAT) in 2008.  Nevertheless, the epidemic 
was intense enough to differentiate highly 
susceptible lines from real promising lines.  
The frequency of promising lines evalu-
ated in 2008 (below 5 in the 1-digit scale 
used) was very similar to that screened in 
2007 under a more intense epidemic and 
again was extremely low (less than 4%).  
The last two years of screening, including 
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2008, were, however, useful to identify lines that consistently show some promise as sources of resistance within our 
germ plasm.  Thirteen such lines (Table 3) have been and continue to be used extensively in crosses with the best resist-
ance sources from the Tunisian program.

table 3.   Promising lines for reaction to Septoria tritici based on data from Béja, Tunisia (INRAT).  Reactions of the 
most resistant lines are in grey.

cid sid cross selection history 2007 2008
148658 71 HUALITA CDWS91M377-9M-030Y-030M-1Y-0M-

0BLR-1Y-0B
— 2

403149 249 BCR/GUEROU_1/3/MINIMUS_6/PLATA_16//
IMMER

CDSS99B00319S-0M-0Y-121Y-0M-0Y-
0B

2 3

283822 56 USDA595/3/D67.3/RABI//CRA/4/ALO/5/HUI/
YAV_1/6/ARDENTE/7/HUI/YAV79//8/POD_9

CDSS96Y00484S-3Y-0M-0Y-1B-0Y-0B-
0B-0BLR-2Y-0B

2 3

261495 18 SOMAT_4/SILVER_1 CDSS95B00182S-2Y-0M-0Y-2B-0Y-0B-
0B

4 3

417954 142 SOMAT_3.1//WODUCK/CHAM_3/5/
AJAIA_16//HORA/JRO/3/GAN/4/ZAR

CDSS00Y01093T-0TOPB-2Y-0BLR-3Y-
0B-0Y-0B

4 3

403142 269 AINZEN_1/6/CHM82A.1062/3/GGOVZ394//
SBA81/PLC/4/AAZ_1/CREX/5/HUI//CIT71/CII

CDSS99B00312S-0M-0Y-51Y-0M-0Y-
1B-0Y

4 3

327961 41 AJAIA_3/SILVER_16//AJAIA_13/YAZI CDSS97Y00618S-1Y-0M-0Y-0B-0B-2Y-
0BLR-1Y-0B

4 4

328423 51 PLATA_10/6/MQUE/4/USDA573//QFN/
AA_7/3/ALBA-D/5/AVO/HUI/7/PLATA_13/8/
THKNEE_11/9/CHEN/ALTAR 84/3/HUI/POC//
BUB/RUFO/4/FNFOOT

CDSS97Y01080T-0TOPM-3Y-0M-0Y-
0B-0B-2Y-0BLR-4Y-0B

5 4

328178 58 LD357E/2*TC60//JO69/3/FGO/4/GTA/5/
SRN_1/6/TOTUS/7/ENTE/MEXI_2//HUI/4/
YAV_1/3/LD357E/2*TC60//JO69/8/SOM-
BRA_20/9/STOT//ALTAR 84/ALD

CDSS97Y00835S-0TOPM-4Y-0M-0Y-
0B-0B-3Y-0BLR-4Y-0B

5 4

283798 47 SORA/2*PLATA_12//SRN_3/NIGRIS_4 CDSS96Y00460S-4Y-0M-0Y-1B-0Y-0B-
0B-0BLR-2Y-0B

5 4

328510 30 RASCON_37/2*TARRO_2/4/ROK/FGO//
STIL/3/BISU_1/5/MALMUK_1/SERRATOR_1

CDSS97Y01167T-0TOPM-2Y-0M-0Y-
0B-0B-1Y-0BLR-4Y-0B

5 5

404000 32 CBC 509 CHILE/4/SKEST//HUI/TUB/3/SIL-
VER/5/GREEN_14/YAV_10/AUK

CDSS99B01170T-0TOPY-0M-0Y-4Y-
0M-0Y-2M-0Y

5 5

261494 50 SOMAT_4/INTER_8 CDSS95B00181S-0M-1Y-0B-1Y-0B-0Y-
0B-0BLR-2Y-0B

5 5
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3rd International Stem Rust Resistance Screening Nursery (3rdSRRSN).

Ravi P. Singh, Julio Huerta-Espino, Sridhar Bhavani, Sybil Herrera-Foessel, Davinder Singh, and Pawan K. Singh.

The presence of effective race-specific and adult-plant resistance was characterized by testing selected advanced breed-
ing lines in the seedling stage with Ug99 and Ug99 + Sr24 races at the USDA–ARS Cereal Disease Laboratory, St. Paul, 
MN, USA.  Seedling tests with leaf rust races also were conducted in greenhouses in Mexico to determine the presence 
of those alien stem rust-resistance genes that are linked to leaf rust-resistance genes in the same translocation.  Molecular 
markers also were applied for genes such as Sr24, Sr25, and Sr26 to confirm their presence.  These studies form the basis 
of resistance genes given in Table 4.  One-hundred five entries (plus checks) were included in the 3rdSRRSN based on 
2006–07 and 2007 screening results from Njoro, Kenya.

USAID–Ug99 Resistant Varieties Seed Multiplication Project.

Fifteen, Ug99 wheat lines were multiplied at El Batan, Mexico, during the 2008 crop season in a 3.3-ha plot.  Ten normal 
and three early maturing lines were selected for the seed project based on their performance in the 3rd Elite Bread Wheat 
Yield Trial (3rd EBWYT) in various countries (Table 5, p. 116).  The early maturing line Francolin#1, although not 
included in the 3rd EBWYT, performed very well in the northeastern Gangetic Plains in on-farm trials and was, therefore, 
selected form multiplication and shipment to Bangladesh, Nepal, and India.

A total of 13 tons of seed was produced and processed and packaged.  Seed quantities shipped to various coun-
tries are summarized in Table 5 (p. 116).  Egypt has already made significant progress in multiplying five Ug99-resistant 

table 4.  Stem rust resistance (based on 2006–07 and 2007 screening results at Njoro, Kenya) of entries included 
in the 30th Elite Selection Wheat Yield Trial (30thESWYT), the 42nd International Bread Wheat Screening Nursery 
(42ndIBWSN), and the 3rd Stem Rust Resistance Screening Nursery (3rdSRRSN).

nursery 30theswYt 42ndiBwsn 3rdsrrsn
category # entries % entries # entries % entries # entries % entries

adult-plant resistance
R (10–15% severity) 1 2.2 4 2.5 0 0.0
R–MR (15–20% severity) 11 24.4 13 8.0 18 17.1
MR (30% severity) 15 33.3 27 16.7 38 36.2
MR–MS (40% severity) 7 15.6 36 22.2 0 0.0
MS (50–60% severity) 2 4.4 38 23.5 0 0.0
S (100% severity) 0 0.0 21 13.0 0 0.0
Race-specific resistance
Sr25 6 13.3 4 2.5 11 10.5
Sr24 + Sr36 0 0.0 0 0.0 4 3.8
Sr33 1 2.2 1 0.6 0 0.0
SrTmp 1 2.2 3 1.9 4 3.8
SrSynt 0 0.0 0 0.0 4 3.8
SrSha7 0 0.0 0 0.0 4 3.8
SrND643 0 0.0 1 0.6 11 10.5
SrHUW234 1 2.2 3 1.9 2 1.9
Sr unknown 0 0.0 2 1.2 9 8.6
Unclassified 0 0.0 9 5.6 0 0.0
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entries selected from 2ndEBWYT, hence smaller quantities 
of new lines were sent.  The remaining seed is stored to 
cater any future needs.

Evaluation of stem rust resistance in wheat 
materials from different countries during 2008 
in Kenya.

A main-season, stem rust screening nursery (June–October) 
was planned and finalized jointly by KARI, CIMMYT–
Kenya, and international collaborators.  More than 18,000 
lines of spring wheat, 2,600 lines of winter wheat, and 700 
lines of barley from 20 countries were planted and screened 
(Table 6). The plots were established well apart from some 
of the late-sown material, which did not perform well, 
probably for a range of reasons, particularly the late arrival 
of seed and poor seed quality.  Artificial rust epidemics 
were created using inoculum collected from previous-year 
screening nurseries.  Rust infection was excellent and 
disease pressure was quite heavy.  The infection type on the 
controls/differentials showed virulence for genes Sr31 and 
Sr24 in the screening nursery indicating the likely presence 
of Ug99 and its variant Ug99 + Sr24 in the screening site.  
Sr36 was partially effective, probably because of the low 
frequency of Sr36 virulence in the pathogen population.  
Lines with notable resistance included Sr25 derivatives, 
several tall Giza (Egypt) lines, derivatives of the Chinese 
wheat Sha7, Canadian materials (Thatcher background plus 
Lr34), some ICARDA and CIMMYT lines, and several 
Egyptian and CIMMYT durum wheats.  A varied response 
of materials with Sr2 also was evident.

table 5.  Ug99-resistant wheat lines included in the USAID–Seed Project and seed quantities shipped (shipment to India pending 
Import Permit).

 
cimmYt name

 
cross

matu-
rity

country and seed quantity (kg)
Bangla-

desh nepal
paki-
stan turkey

afghani-
stan egypt

ethio-
pia india

DANPHE #1 KIRITATI//2*PBW65/ 
2*SERI.1B Normal  100     100  

KINDE #1 PBW343*2/KUKU-
NA//KIRITATI Normal        100

PICAFLOR #1 KIRITATI//SERI/
RAYON Early 100 100   50  100 100

PAURAQUE #1

WAXWING*2/4/SNI/
TRAP#1/3/
KAUZ*2/TRAP//
KAUZ

Early 100 100      100

GRACKLE #1 WAXWING*2/KUKU-
NA Normal      25   

BECARD #1 WBLL1*2/KIRITATI Normal  100       

MUNAL #1 WAXWING*2/KIRI-
TATI Normal  100 300 100 50  100  

FRANCOLIN #1 WAXWING*2/VIV-
ITSI Early 100 100      100

table 6.  Number of wheat lines screened and resistant 
lines selected from different countries at KARI Njoro 
(Kenya) during the main season 2008.

country
no. of lines screened resistant 

lines selectedspring winter
Australia 1,862 9 18
Argentina 112 — 12
Canada 1,400 2 21
CIMMYT 3,049 657 151
Egypt 228 — 12
ICARDA 5,908 111 16
India 318 — 4
Iran 371 179 3
Israel 10 — —
Kazakhstan 259 — 13
Kenya 1,305 — 40
Nepal 125 — 1
Pakistan 135 — —
South Africa 140 — 11
Sudan 70 — —
Turkey 130 270 7
Uruguay 290 — 13
USDA 2,433 1,450 -
Total 18,145 2,678 322
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Communications/logistics were established with relevant scientists/originators for scoring their material.  More 

than 20 scientists from different countries visited their germ plasm materials and assistance was provided for data taking 
and selections.  The low frequency of resistant materials remained a common feature among wheat materials from many 
countries with more than 80% of the screened germ plasm susceptible.  The data has been documented and sent to the 
collaborators.  From the resistant material, an elite set of 322 lines was selected to further characterize and determine the 
inheritance of resistance or for use as a source of resistance in crossing programs.

Cloning of Lr34/Yr18 and the development of diagnostic marker.

The highlight of 2008 has been the cloning of the pleiotropic leaf rust/yellow rust/powdery mildew resistance gene Lr34/
Yr18/Pm38 and acceptance of a paper in Science.  The success of the cloning involved a strong collaboration between 
CIMMYT, CSIRO, and the University of Zurich, where CIMMYT’s main role was generating deletion mutants and phe-
notyping mapping populations.  Lr34/Yr18/Pm38 turned out to be a new kind of resistance gene.

The abstract of Science paper is as follows: “Durable disease resistance in crops has great relevance for agricul-
ture and breeding, but is not understood well at the molecular level.  Durable resistance is often partial and controlled by 
several genes.  Lr34 is an important genetic component of resistance to three of the most devastating fungal pathogens in 
wheat:  leaf rust, stripe rust, and powdery mildew.  Lr34-based resistance has been durable for more than 50 years, is de-
ployed globally, and specifically acts in the adult-plant stage.  Here, we show that Lr34 encodes an ATP-binding cassette 
transporter of the pleiotropic drug resistance subfamily.  Wheat alleles of Lr34 conferring resistance or susceptibility 
differ by three sequence polymorphisms which are conserved in all three breeding lineages with Lr34 in the global wheat 
gene pool.  The Lr34 gene stimulates senescence-like processes in the flag leaf tips and edges.”

The cloning success also has resulted in the development of a diagnostic molecular marker by CSIRO, which is 
under validation.

Development and characterization of an RIL mapping population for 
a single, slow-rusting resistance gene on chromosome 7BL.

An F5 RIL mapping population of about 400 lines was developed from two sister lines 
and phenotyped at Cd. Obregon, Mexico, for fine mapping of a new, slow-rusting 
(adult-plant) leaf rust-resistance gene located in chromosome 7BL.  The leaf rust 
severity response of the resistant parent (two sister-lines) was 15MS, whereas the 
susceptible parent showed 100S.  Segregation confirmed involvement of a single, 
slow-rusting resistance gene.  The population is planted for the second year evalua-
tion during 2008–09 to confirm the phenotypic responses.  Molecular mapping studies 
confirmed the location of this gene to 7BL (Fig. 1).  The chromosomal region where 
the gene is located corresponds to a gene-rich area where a cluster of defense-response 
genes and the seedling-resistance gene locus Lr14a are located.

Development of durum wheat germ plasm with slow-rusting 
resistance to leaf rust.

A total of 1,843 advanced lines of durum wheat, obtained from 28 three-way and four-way crosses of slow-rusting durum 
wheats carrying 2–3 minor additive genes, were grown during 2007, and 106 lines with enhanced resistance and desir-
able agronomic and grain characteristics were chosen for leaf rust and grain yield in nonreplicated trials.  An additional 
62 lines with race-specific resistance also were selected.  Slow-rusting lines with high levels of resistance and acceptable 
yield performance comparable to that of Jupare C2001 were identified.  Leaf rust severities of the lines were consider-
ably higher at El Batan compared to 2007–08.  The best identified durum wheat lines are being used at present for con-
tinued breeding to develop lines with high, stable levels of durable resistance to leaf rust. 

fig. 1.  Linkage map with 
the slow-rusting resistance 
gene (Lr-Prl) and its associa-
tion with four microsatellite 
markers, and the CAPS marker 
Psy1-1 associated with yellow 
pigment, based on a popula-
tion of the first sister-line (198 
F5 lines). 

 

gwm577-7B 
6.

1 wmc273-7B 2.

5 barc182-7B 1.

3 wmc232-7B 
4.

4 Lr-Prl 5.

1 Psy1-1 
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Association mapping of leaf, yellow and stem rust resistance in an historical Elite Selection Wheat 
Yield Trial (ESWYT) set.

A total of 170 entries from five historical ESWYT trials (ESWYT 1, 6, 10, 20, and 24) were evaluated for leaf, yellow, 
and stem rust resistance in El Batan and Toluca, Mexico, in 2007, and in Kenya in the off and main season in 2008 under 
high disease pressure to races MBJ/SP and MCJ/SP (for leaf rust), PBW343 (for yellow rust), and Ug99 + Sr24 (for stem 
rust).  This same ESWYT set had been used previously to identify regions associated with leaf, yellow, and stem rust; 
powdery mildew; and grain yield based on historical data that had been collected between 1979 and 2004.  The final rust-
severity ratings taken for the three rusts and the area under the disease progress curve for leaf rust and the coefficient of 
infection for stem rust together with already available genotypic data and chromosome maps were used for an associa-
tion analysis.  Chromosomal regions were identified with markers associated to leaf, yellow, and stem rust resistance 
genes that are effective to the predominant races of relevance today and the number of significant markers in each region 
(Table 7).  The same trial was sown in 2008–09 for a second year of leaf rust data and will be sown in Toluca, Mexico, 
during 2009.  A gene-postulation test for leaf rust resistance was carried out in 2008 in the greenhouse to confirm the 
regions identified through association genetic analysis and investigate the power of this tool to identify regions with 
known genes that are present in each line.  Seedlings of the same 170 entries were inoculated with 13 different races of P. 
triticina and infection-type 
response were compared to 
the differential sets of iso-
genic lines with known leaf 
rust-resistance genes.  The 
leaf rust-resistance genes 
identified through gene 
postulation were Lr1, Lr3, 
Lr10, Lr14a, Lr13, Lr16, 
Lr17, Lr19, Lr24, and Lr27 
+ Lr31.  Additional un-
known seedling resistance 
genes were present in some 
of the lines.  The infection-
type response from each of 
the 13 races were trans-
formed to quantitative data 
and association analysis 
made from the response 
from each race; the analysis 
is still in process.  From 
the known seedling genes 
identified in the greenhouse 
test, only Lr19 and Lr24 are 
effective to the predominant 
races used in the field trial.  
Regions whit slow-rusting 
resistance genes, such as 
Lr34, were confirmed from 
the association analysis 
based on field data.  Further 
analysis will help iden-
tify regions with unknown 
slow-rusting resistance 
genes.

table 7.  Chromosomal regions possessing DArT markers associated with resistance 
to current races of leaf (LR) and yellow (YR) rust in Mexico and stem rust race Ug99  
(SR) in Kenya.  The number of markers associated in each chromosome arm given in 
parenthesis.
chromosome short arm long arm Unknown arm

1A LR(1), YR(1), SR(2) LR(3), YR(1), SR(1) YR(1), SR(1)
1B LR(15), YR(2) YR(2), SR(1) LR(3), SR(1)
1D YR(6), SR(2) SR(1)
2A YR(2) SR(1) SR(2)
2B SR(3) LR(4), SR(4) LR(1), SR(1)
2D LR(1) YR(1)
3A LR(1), SR(2)
3B LR(1), YR(8), SR(4) LR(2), YR(4), SR(4) LR(1), SR(1)
3D
4A LR(2), YR(5), SR(1) YR(3), SR(1)
4B LR(3), SR(1) LR(1), YR(1), SR(2) YR(2), SR(2)
4D LR(1)
5A YR(1) LR(1) YR(1), SR(1)
5B LR(1), YR(2), SR(1) LR(1), YR(2), SR(3) LR(1)
5D
6A SR(1) LR(7), SR(4)
6B LR(1), YR(5), SR(3) SR(1) YR(1), SR(1)
7A LR(2), YR(1), SR(3) LR(3), SR(1) SR(1)
7B SR(2) LR(2), YR(4), SR(3) YR(1)
7D LR(2), YR(2), SR(2) LR(1), YR(1), SR(7)



119

A n n u a l  W h e a t  N e w s l e t t e r            V o l.  5 5.
Stem rust resistance:  Development of mapping populations.

Development of 15 mapping populations was completed during 2008 (Table 8).  These populations were planted as sin-
gle replicates at Njoro, Kenya, during the 2008–09 season for first-year, stem rust phenotyping and in screenhouse at El 
Batan, Mexico, for seed multiplication.  Three or four populations will be selected based on the phenotyping results for 
second-year phenotyping in replicated trials and molecular characterization.

Mapping of stem rust resistance:  Identification of genomic regions governing seedling resistance 
to Ug99.

Five populations, where a resistant parent possibly carried previously an uncharacterized race-specific resistance gene 
to Ug99 race of stem rust pathogen, were used in molecular mapping (Table 9).  Segregating F3 and F4 populations were 
characterized for seedling stem rust response in the greenhouse of the USDA–ARS, St. Paul, MN, USA, by Dr. Yue Jin. 
The populations also were characterized in the field at Njoro, Kenya, during 2007–08 and 2008.

table 9.  Wheat lines with uncharacterized race-specific resistance genes to stem rust race Ug99 of included in mo-
lecular mapping of resistance (IT = infection type).

resistance source it
susceptible

parent it
MILAN/SHA7/3/THB/CEP7780//SHA4/LIRA/4/SHA4/CHIL (F3 population) 2 PBW343 33+
NINGMAI 9415.16//SHA4/CHIL/3/NINGMAI 50 (F3 population) 2– PBW343 33+
CHEN/Ae. tauschii//2*EAVER/3/OASIS/5*BORL95 (F3 population) 2– PBW343 33+
CHEN/Ae. tauschii (TAUS)//BCN/3/CMH81.38/2*KAUZ (F4 population) 3– PBW343 33+
NING9415/3/URES/BOW//OPATA/4/NINGMAI 7 (F4 population) 2– PBW343 33+

table 8.  A summary of the populations developed for mapping uncharacterized sources of adult-plant resistance to 
stem rust and planted for phenotyping at Njoro, Kenya, during 2008–09.

pBw343 / parents with adult-plant resistance Generation
no. of 
rils

JUCHI F6 225
KIRITATI F6 225
PAVON76 F6 225
DUCULA/2*PRINIA F6 225
PGO/SERI//BAV92 F6 225
Kenya Nyangumi F6 225
Kenya Kudu F6 225
Kenya Swara F6 225
Kenya Fahari F6 225
KINGBIRD F5 200
CNDO/R143//ENTE/MEXI_2/3/Ae. tauschii (TAUS)/4/WEAVER/5/ 2*KAUZ /6/FRET2 F5 150
PFAU/WEAVER*2//KIRITATI F5 150
PGO//CROC_1/Ae. tauschii (224)/3/2*BORL95/4/CIRCUS F5 150
BABAX/3/OASIS/SKAUZ//4*BCN/4/PASTOR F5 150
HE1/3*CNO79//2*SERI/3/ATTILA/4/WH 542 F5 150
HPO/TAN//VEE/3/2*PGO/4/MILAN/5/SSERI1 F5 150
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A bulk-segregant analysis was used to identify marker-trait associations.  Bulks were constituted by pooling 

DNA of 10 individual families each from nonsegregating resistant and nonsegregating susceptible classes.  We used 213 
microsatellite primers uniformly spread over the A, B, and D genomes.  Markers that exhibited polymorphism among 
the resistant and susceptible bulks and parents were genotyped on the unscrambled HR and HS families and preliminary 
mapping analysis was performed.  Recombination fractions were calculated with the MAP MANAGER Version QTXb20 
using the Kosambi mapping function.

Greenhouse evaluation for resistance to tan spot and Stagonospora nodorum blotch.

Two sets of material from the Irrigated Bread Wheat Program included i) an irrigated, bread wheat set of 105 lines (the 
same lines also were included in the second-year Fusarium testing) and ii) an historical ESWYT set of 170 entries used 
for association mapping.  Three experiments were conducted in the greenhouse for each disease.  Each experiment was 
conducted as a randomized block design with two replicates.  Each replicate consisted of the complete set of genotypes 
planted in trays.  The experimental unit consisted of four plants/entry and 48 entries were planted in each tray.

The Pyrenophora tritici-repentis race 1 isolate Ptr-1 was used to induce tan spot.  Race 1 is highly virulent and 
the most prevalent race worldwide.  The Phaeosphaeria nodorum isolate SN-4 was used to induce Stagonospora nodo-
rum blotch.  Two-week-old seedlings were inoculated and rated eight days later for disease reaction based on a 1–5 scale.   
A mean rating of less than 2 was considered resistant, and those higher than 2 were considered to be susceptible.

irrigated bread wheat set.  For tan spot 35 entries were resistant while 70 were susceptible and in case of Stagonospora 
nodorum blotch 18 entries were resistant and the remaining 87 entries were susceptible.  Many entries were resistant to 
one disease and susceptible to the other or vice-versa, however, nine entries were resistant to both the diseases (Table 10, 
p. 116). 

historical elite selection wheat Yield trial (eswYt) set.  This set was comprised of 170 wheat lines derived from 
five CIMMYT elite spring wheat yield trials (ESWYT 1 (1979), ESWYT 6 (1984), ESWYT 10 (1988), ESWYT 20 
(1999), and ESWYT 20 (2004)).  Eighty-nine genotypes were resistant and 81 were susceptible to tan spot; 33 entries 
were resistant and the remaining 137 entries were susceptible to Stagonospora nodorum blotch.  Many entries were 
resistant to one disease and susceptible to the other or vice-versa, however, 26 entries were resistant to both the leaf spot-
ting diseases (Table 10, p. 121).

Association mapping of tan spot resistance.

The molecular data generated earlier on the historical ESWYT set of 170 wheat lines and tan spot resistance data pre-
sented above were used for association mapping analysis.  Results reveal that genomic regions on short arm of chromo-
somes 1A, 1B, and 6B and long arm of chromosomes 4A, 6A, 2B, 3B, 5B, and 7B may play important role in conferring 
resistance to tan spot induced by P. tritici-repentis race 1.  Some of the above genomic regions contributing to tan spot 
resistance have been previously identified; however, novel genomic regions were identified in this study.  Findings of this 
study reveal that CIMMYT wheat germ plasm is likely to contain novel sources of resistance to tan spot.

General wheat pathology.

Etienne Duveiller, M. Mezzalama, J. Murakami, N. Lozano, F. Lopez, J. Segura, A. Djurle, N. Schlang, P. Singh, M. 
Preciado, and M-E. Leymus.

fusarium head blight research.  Fusarium head blight or scab is one of the most destructive fungal diseases affect-Fusarium head blight or scab is one of the most destructive fungal diseases affect-
ing wheat.  The disease reduces kernel weight, yield, and flour extraction rates particularly in warm and humid wheat-
growing areas.  Fusarium species causing FHB produce mycotoxins that contaminate the grain and have been shown to 
be harmful to human and animal health.  The mycotoxins of primary concern are the trichothecenes the most common of 
which in scabby grain is deoxynivalenol (DON) produced by F. graminearum and F. culmorum.
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table 10. Disease reaction of genotypes resistant to tan spot (TS) and Stagonospora nodorum blotch (SNB) in seedling evaluation 
under greenhouse conditions.  Plants were rated on a 1–5 scale, and the data presented is mean of three experiments each with two 
replicates.

cid # sid # cross ts snB

 irrigated bread wheat set
480918 25 PBW343*2/KUKUNA/3/PASTOR//CHIL/PRL 1.58 1.75
465822 91 CHEN/AE.SQ//2*OPATA/3/TILHI/4/ATTILA/2*PASTOR 1.67 1.60

482087 21 CNDO/R143//ENTE/MEXI_2/3/Ae. tauschii (TAUS)/4/WEAVER/5/2*KAUZ/6/
PRL/2*PASTOR/7/FISCAL 1.64 1.88

459285 75 THELIN/3/BABAX/LR42//BABAX/4/BABAX/LR42//BABAX 1.78 1.61
448391 74 BABAX/LR42//BABAX*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ 1.58 1.88
448436 114 PFAU/WEAVER*2//TRANSFER#12,P88.272.2 1.63 1.72
373440 145 80456/YANGMAI 5//SHA5/WEAVER/3/PRINIA 1.25 1.63
90292 248 NG8675/CBRD 1.58 1.75
90248 173 SHA3/CBRD 1.53 1.46

 historical elite selection wheat Yield trial set
7760 9 DOVE 1.92 1.99
7668 42 SUNBIRD 1.58 1.72
7668 6 SUNBIRD 1.76 1.49
7691 18 GENARO T 81 1.28 1.58
8256 8 TTR/BOW 1.69 1.76
8918 10 SAP/MON 1.74 1.97
7691 319 VEERY 1.28 1.67
9704 5 SASIA 1.67 1.72
8176 7 SIBIA 1.56 1.78
7507 8 FASAN 1.38 1.63
53292 49 CARACARA 1.38 1.92
7691 50 SERI M 82 1.40 1.74
8195 5 RAYON F 89 1.56 1.71
7896 254 BACANORA T 88 1.38 1.99
43379 332 TOROCAHUI S2004 1.75 1.63
67414 39 IRENA/KAUZ 1.33 1.83
122467 76 OASIS/5*BORL95 1.85 1.83
65950 13 KAUZ*2/YACO//KAUZ 1.92 1.76
160593 23 SUPER SERI #2 1.86 1.83
160593 43 SERI*5//AGA/6*YR 1.58 1.86
98843 59 BUC/PRL//WEAVER 1.94 1.96

114906 319 CHEN/Ae. tauschii (TAUS)//BCN/3/KAUZ 1.42 1.92

118879 206 CROC_1/Ae. tauschii (205)//KAUZ/3/ATTILA 1.24 1.58

118879 209 CROC_1/Ae. tauschii (205)//KAUZ/3/ATTILA 1.35 1.58
120854 182 CHOIX/STAR/3/HE1/3*CNO79//2*SERI 1.56 1.55
134029 124 SW89.5181/KAUZ 1.63 1.95

6B-662 1.92 2.38
6B-365 3.40 3.37
Glenlea 3.71 3.42
Saloumini 1.54 1.58



122

A n n u a l  W h e a t  N e w s l e t t e r            V o l.  5 5.
CIMMYT started a breeding program for FHB resistance in the early 1980s with the routine screening of con-

ventional and distantly related Triticeae germ plasm.  In 1989, CIMMYT and China initiated a shuttle-breeding and germ 
plasm exchange program focusing on the integration of FHB resistance from Chinese wheats into high-yielding CIM-
MYT germ plasm.  As a result, many Chinese derivatives have been included in the CIMMYT international nurseries 
that are distributed around the world.

field screening.  Until 2005, CIMMYT conducted field screening activities at the experiment station of Toluca, Mexico 
(2,640 masl), where the humid environmental conditions during the summer are particularly favorable to the develop-
ment of the disease but, nevertheless, unverifiable and not possible to control.  Since 2006, we modified our FHB screen-
ing system for greater accuracy and precision by shifting our operations to El Batan, Mexico, implementing an automat-
ed, programmable misting system, and using precision CO2 sprayers for liquid inoculum application.  The system allows 
the systematic and detailed screening of up to 9,000 plots (1–1.5-m double row) per year in the fields.  The materials 
tested each year include advanced materials from the irrigated and rainfed CIMMYT wheat breeding programs, synthetic 
derivatives and wide crosses, elite triticale materials, multiple mapping populations, and introductions of new FHB-
resistant materials.  In 2008, in addition to the screening program, three trials were included under this screening system:

- a trial to confirm and assess the mycotoxin content of 36 advanced lines that have been evaluated in two previ-
ous years and tested for type-II resistance in the greenhouse in 2008, 

- a trial to evaluate the effect of exposure to the misting system on DON content in two resistant and two sus-
ceptible lines depending on the harvest time (i.e., immediately after ripening vs. harvesting the entire screen-
ing field, which only can be done after late entries have been scored), and

- an experiment to assess the correlation between DON content and incidence/severity of FHB and its spatial 
distribution in the field.

Greenhouse screening.  Mexican F. graminearum strains and other Fusarium species isolated from farmers fields and 
causing head blight were characterized.  Suitable isolates to use in field screening, evaluating aggressiveness, and for 
chemotype and species verification were determined.  Type-II resistance in wheat lines that have shown low FHB index 
and low mycotoxin content in the field were conducted.

don evaluation.  Quantification of DON in the most promising lines used the RIDASCREEN® FAST DON ELISA (R-
Biopham AG, Germany).  We also evaluated alternative methods for DON quantification including (qPCR).

molecular pathology and marker-assisted selection.  This work involved identifying Mexican Fusarium species and 
chemotype determination, evaluating alternative methods for DON quantification including (qPCR), and using MAS 
(3BS markers) in selected crosses made by the breeders.

international seed exchange network.  Distributed the eleventh Scab Resistance Screening Nursery (11th SRSN) in 
2008 and coördinated the Fusarium International Preliminary Spring Wheat Nursery (FIPSWN) and the Fusarium Inter-
national Elite Spring Wheat Nursery (FIESWN) proposed by the ‘Global Fusarium Initiative’.

monitoring of long-term agronomy trials.  This program is collaborating with CIMMYT’s wheat agronomy group to 
investigate the long-term effects of conservation agriculture practices and rotation on FHB incidence, severity, and DON 
accumulation.  Two years of data are already available.

distribution of the 11th scab resistance screening nursery (srsn).  The SRSN was started at CIMMYT in 1985.  
These nurseries have consisted of the best FHB-resistant material identified through CIMMYT’s FHB-screening trials 
and have been distributed to interested programs around the world upon request.  In 2008, 54 sets of the 11th SRSN were 
distributed worldwide under the Standard Material Transfer Agreement adopted by the Governing Body of the Interna-
tional Treaty on Plant Genetic Resources for Food and Agriculture.  This nursery includes the 47 best-performing, CIM-
MYT bread wheat lines and can be requested by anyone interested in improving wheat for resistance to FHB.  Character-
istics of the lines, including FHB index, DON content, and Fusarium damaged kernels (FDK) are reported in Table 11 (p. 
123).

spot blotch screening in agua fria, puebla, mexico.  Spot blotch, caused by Cochliobolus sativus, emerged as a 
major threat to wheat production in the warmer, nontraditional wheat-growing areas in the late 1980s.  This foliar disease 
causes significant yield losses annually (15–20% on average in South Asia) endangering the livelihoods of millions of 
small farmers.  Effective measures in the field are needed to mitigate the impact of spot blotch on food security in af-
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table 11.  List of bread wheat lines included in the 11th Scab Resistance Screening Nursery distributed by CIMMYT during 2008 
with data on field performance in the previous year.

entry cross
fhB 
index

don 
(ppm)

fdK 
%

6401 NG8675/CBRD//SHA5/WEAVER 7.2 0.8 12.5
6402 80456/YANGMAI 5//SHA5/WEAVER 5.1 1.4 17.5
6403 EMB16/CBRD//CBRD 14.4 — .—
6404 MAYOOR//TK SN1081/Ae. tauschii (222)/4/CS/LE.RA//CS/3/PVN/5/PRINIA 9.4 2.0 8.0
6405 GONDO/CBRD 5.1 0.8 25.0
6406 YANGMAI 5*2/4/MOR/VEE#5//DUCULA/3/DUCULA 13.1 4.8 65.0
6407 SUM3/3/CS/LE.RA//CS/4/YANGMAI 158 12.0 1.5 30.0
6408 BAU/MILAN//CBRD 9.1 1.1 40.0
6409 SHA3/SERI//G.C.W 1/SERI/3/SHA3/SERI//YANG87-142 10.3 1.1 50.0
6410 80456/YANGMAI 5//SHA5/WEAVER/3/PRINIA 6.8 1.1 19.0
6411 80456/YANGMAI 5/3/PF70354/BOW//DUCULA/4/DULUS 7.0 2.1 25.0
6412 WUH1/VEE#5//CBRD 10.2 0.6 20.0
6413 SHA4/CHIL/4/CAR422/ANA//TRAP#1/3/STAR 10.3 2.3 50.0
6414 EMB16/CBRD//CBRD 4.6 0.5 4.0
6415 GAMENYA 91.9 8.0 —
6416 TNMU/6/CEP80111/CEP81165/5/MRNG/4/YKT406/3/AG/ASN//ATR 14.8 0.8 3.3
6417 FALCIN/Ae. tauschii (312)/3/THB/CEP7780//SHA4/LIRA 44.7 — —
6418 SHANGHAI 13.9 1.2 11.3
6419 FRTR/MTA 5.5 1.2 1.0
6420 HEILO 11.7 2.5 33.3
6421 SUMAI #3 3.9 0.3 8.0
6422 SUMAI #3,AUT 2.8 — —
6423 NG8675/CBRD//MILAN/3/NG8675/CBRD 9.1 0.4 5.3
6424 NING MAI 9558 10.4 3.9 20.0
6425 TINAMOU 10.4 1.5 7.3
6426 TRAP#1/BOW//TAIGU DERIVATIVE 9.8 0.7 7.0
6427 SHA3/CBRD 6.3 1.1 2.0
6428 SUM3/3/CS/LE.RA//CS/4/YANGMAI 158 8.9 0.5 8.0
6429 TRAP#1/BOW//TAIGU DERIVATIVE 9.8 0.7 8.0
6430 EMB27/KLORI 9.6 0.5 1.7
6431 GONDO/TNMU 10.0 3.1 14.7
6432 IVAN/6/SABUF/5/BCN/4/RABI//GS/CRA/3/Ae. tauschii (190) 10.4 1.0 3.3
6433 IVAN/6/SABUF/5/BCN/4/RABI//GS/CRA/3/Ae. tauschii (190) 14.0 1.6 12.0
6434 BR23/EMB27 5.8 0.5 4.0
6435 YANGMAI 5 6.9 2.1 15.3
6436 ATTILA/TNMU//TNMU 3.5 1.0 10.0
6437 SHA5/WEAVER//GONDO 2.1 0.5 45.0
6438 RUSS/7/OPATA/6/68.111/RGB-U//WARD/3/FGO/4/RABI/5/Ae. tauschii (878) 3.9 0.9 20.0
6439 SHA5/WEAVER//80456/YANGMAI 5 4.2 0.6 6.0
6440 RUSS/7/OPATA/6/68.111/RGB-U//WARD/3/FGO/4/RABI/5/Ae. tauschii (878) 5.1 0.7 40.0
6441 VERDE/7/OPATA/6/68.111/RGB-U//WARD/3/FGO/4/RABI/5/Ae. tauschii (878) 5.1 2.5 4.0
6442 CROC_1/Ae. tauschii (205)//KAUZ/3/PRL/SARA//TSI/VEE#5 6.5 0.7 8.0
6443 SRN/Ae. tauschii (358)//MILAN/SHA7 5.3 1.5 30.0
6444 GONDO 5.3 0.5 70.0
6445 PBW343/WBLL1//PANDION 4.0 1.3 4.0
6446 SKAUZ/BAV92//CHUM18/7*BCN 4.8 3.4 35.0
6447 CHIBIA//PRLII/CM65531/3/SKAUZ/BAV92 5.1 5.5 20.0
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fected areas.  A review of three decades of work on spot blotch in wheat has been prepared and accepted for publication 
in Journal of Phytopathology (in press).  The review summarizes the global knowledge on genetic improvement and 
crop-management strategies to minimize yield losses based on latest field research.  Recent studies have shown that spot 
blotch severity is highly influenced by stress factors affecting crop physiology, which in turn affects host tolerance and 
resistance to the pathogen.  Soil nutrient and water stress aggravate spot blotch-induced grain yield losses.  Heat stress, 
which is gradually increasing in Asia, causes higher levels of disease damage.  Genetic improvement is the cornerstone 
of a sustainable control of spot blotch in all affected regions.  Resistance is essentially based on Chinese and South 
American sources and interspecific crosses with broadly adapted semidwarf germ plasm.  A list of genotypes consistently 
reported in the last 10 years to have at least partial resistance to spot blotch, along with their inheritance of resistance, 
has been compiled to help breeding programs.  Because the fungus is aggressive under conditions of high relative humid-
ity and heat, which in turn influences plant susceptibility, a synthesis of the different tools for scoring disease severity is 
given.  Because resistance is incomplete, the ultimate goal is the accumulation of minor genes for resistance in adapted, 
high-yielding genotypes.  The use of resistant cultivars, timely seeding, adequate fertilization, crop rotation, and the 
judicious use of fungicides can be part of an integrated pest-management strategy for controlling yield losses due to spot 
blotch.

If the base of genetic resistance has to be expanded including through the use of new interspecific crosses or 
synthetic derivatives, field screening against spot blotch in Mexico should not be overlooked.  This was confirmed again 
in Agua Fria, Mexico, in March 2008 at a CIMMYT maize station at the limit of Puebla and Veracruz where several hun-
dreds advanced lines from the GREU program were tested.  Typical spot blotch symptoms could be observed and scoring 
was conducted easily in second half of February.  The Global Wheat Program resumed activities in Agua Fria in Decem-
ber, 2008, for future activities supporting the CSISA project in South Asia.  The wheat pathology laboratory produced 
about 150-kg sorghum grain based inoculum that has been incubated for approximately six weeks at room temperature 
after been inoculated with three local C. sativus strains.

screening for tan spot resistance in el Batan and oaxaca, mexico.  Tan spot is considered to be the most important 
foliar wheat disease associated with zero tillage, because the fungus can over-winter on stubble.  Screening for resistance 
in the field is cumbersome and difficult; the production of inoculum in sufficient quantity is complicated and slow be-
cause conidia are important for the disease development but are only induced under specific light requirements.  Tan spot 
development is relatively slow in El Batan and symptoms are difficult to assess, because plants are submitted to earlier 
attacks by other foliar pathogens such as rusts.  In Mexico, at least two races (1 and 2, based on host specific toxins) are 
known to exist.  In 2008, systematic field screening in pathology plots continued at El Batan using race 1, the most com-
monly found race globally.  A range of approximately 120 wheat entries known to show differences in resistance were 
field-tested from June to late September.

The inoculum-production protocol was revised and the rate of conidia production in the laboratory was im-
proved.  We confirmed the difficulty of establishing tan spot epidemics at El Batan.  With the arrival of Dr. P. Singh, 
more effort has been done on seedling screening in the greenhouse.  With support from SIDA/Sweden, we also have 
increased efforts towards setting up a high-throughput system for screening under hydroponics.  This system still needs 
some adjustment but should help us select resistant materials based on seedling evaluations such as those done in 
Queensland, Australia.  In collaboration with INIFAP, screening for resistance under natural epidemics continued for a 
second year in Yanhuitlan (Oaxaca) a location where CIMMYT used to screen efficiently for tan spot resistance until 
1997.  The performance of promising entries in El Batan and Oaxaca in 2008 is given in Table 12 (p. 125).

Leaf samples affected by tan spot were positively identified in the Oaxaca area, Tlaxcala, Guanajuato, and the 
State of Mexico in 2008 expanding our isolates collection and allowing us to refine our study of the race structure in 
the country.  These strains will be characterized in early 2009 under a project sponsored by the Swedish Government.  
The objective is to make screening for tan spot resistance in wheat more effective in CIMMYT's global wheat-breeding 
program.
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table 12.  Field results (double-digit score) of some of the most promising genotypes under tan spot epidemics at El 
Batan and Oaxaca (Mixteca), Mexico, in 2008.

cid sid cross name

oaxaca 2008 el Batan 2008

rep 1 rep 2 rep 1 rep 2
d1 d2 d1 d2 d1 d2 d1 d2

7572 0 MILAN          Resistant Check 0 0 2 1 4 2 3 2
463293 51 AC8528/FRET2 1 1 0 0 4 2 4 2
20026 580 MILAN/SHA7 0 0 0 0 4 2 5 2
73478 615 SHA3/SERI//G.C.W 1/SERI 0 0 0 0 4 2 5 2

213007 798 ALD/COC//URES/3/MILAN/SHA7 0 0 0 0 5 2 4 2
13594 182 MILAN/AMSEL 1 1 0 0 4 2 6 2

213008 761 ALD/COC//URES/3/FCN 2 1 1 1 4 2 5 2
213007 788 ALD/COC//URES/3/MILAN/SHA7 1 1 0 0 5 2 5 2
213024 781 MILAN/SHA7/3/ALD/COC//URES 0 0 1 1 3 2 5 3

5230 0 TOROPI 3 2 2 1 4 2 4 2
303317 131 EMB16/CBRD 0 0 1 1 6 2 6 2
66483 1 M3 0 0 0 0 5 2 5 3

213024 783 MILAN/SHA7/3/ALD/COC//URES 0 0 0 0 5 2 5 3
213008 760 ALD/COC//URES/3/FCN 1 1 1 1 7 2 5 2
373305 625 EMB16/CBRD//CBRD 2 1 4 2 4 2 5 2
287012 0 INIA BOYERO 3 2 2 1 6 2 4 2
21597 4193 CATBIRD 0 0 1 1 5 3 7 2
21035 0 SABUF 0 0 0 0 5 3 5 3

481810 110 PFAU/MILAN/4/VEE/TRAP#1//
ANGRA/3/PASTOR 0 0 0 0 6 3 6 2

213023 761 GUAM92/FCN 1 1 0 0 3 2 8 3

435388 110
MILAN/10/ZIY98*2/9/KT/BAGE//
FN/U/3/BZA/4/TRM/5/ALDAN/6/
SERI/7/VEE#10/8/OPATA

1 1 1 1 4 2 7 3

8050 89 ITAPUA 40-OBLIGADO 2 1 2 2 3 2 7 3
424190 1 KLEIN DON ENRIQUE 1 1 4 2 5 2 5 3
213006 809 ALD/COC//URES/3/GUAM92 1 1 2 2 5 3 7 2

440369 186 MAYOOR//TK SN1081/Ae. 
tauschii (222)/3/CBRD 1 1 1 1 6 2 7 3

7919 1625 TINAMOU 3 1 3 2 6 2 7 2
435183 89 FOW/JA903//PASTOR 1 1 2 1 8 2 8 2
450351 72 ZIY98*2/PBW65//BERKUT 1 1 0 0 5 3 7 3
67414 56 IRENA/KAUZ 1 1 0 0 6 2 8 3

425914 83 SLVS//ZIY98*2/M10 (MUTATED 
C-306) 1 1 0 0 7 3 5 3

469796 1 INIA CHURRINCHE 2 1 4 2 7 2 7 2
7027 5 CIANO T79       Susceptible Check 6 2 6 2 8 4 8 4
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CIMMYT bread wheat for semiarid Mexico.

Yann Manès.

performance of material coming from physiological crossing.  Of the 205 candidates to the 27th Semi-arid Wheat 
Screening Nursery (SAWSN) evaluated in northwest Mexico, 48 (23%) came from crosses made by the physiology 
group combining complementary, drought-adaptive physiological traits (PT).  When this group was compared with those 
based on conventional crossing, they showed similar yields in irrigated environments but outperformed significantly the 
conventional group in the drought trials each year for three consecutive years (Table 13).  Based on these results, PT 
lines constitute 25% of the genotypes of the 27th SAWSN and 32% of the 17th SAWYT, which will be evaluated by many 
national wheat programs in developing countries.

The physiological data generated by Matthew Reynolds’ group in drought trials on these 48 lines and their par-
ents, planted in the same evaluation trials, has confirmed that some lines have cumulated most of the good physiological 
attributes of their parents, which was seen in elite x elite crosses and in crosses involving Mexican landraces.

This data is very encouraging for the use of physiological information on designing crosses.  The CIMMYT 
rainfed-wheat breeding program now applies systematically this approach.  The Physiology Wheat Group evaluates in 
detail part of the rainfed crossing block, mainly new elite lines sent to semiarid international nurseries, and returns to 
us the most outstanding lines, indicating for each the main physiological attributes.  We then use crosses combining the 
physiological information with yield, disease resistance, and end-user quality.  Of crucial importance to maximize the 
chances of success is the way breeding populations are managed during the selection.  The traits for stress involved in the 
model that underlies the physiological crossing are likely to be controlled quantitatively by many genes.  Large breed-
ing populations are necessary to maintain enough variability during the mass-selection phase and reach the yield-testing 
stage with enough lines to have a good probability of identifing the few that will have accumulated many, positive yield 
alleles.  This new strategy of wheat breeding involves fewer crosses written from more parental information and larger 
populations generated.  Without talking of converting an entire wheat -breeding program, one could envision allocating 
a significant part of this resource to a few crosses and, for the rest of the program, keep selecting from a large number of 
crosses that always will remain necessary to explore the germ plasm.

evolution of a semiarid, bread wheat breeding scheme.  The last year of three years of yield testing, PYT, YT, and 
candidates was 2007–08.  PYT and YT have been selected similarly with one yield plot under full irrigation and repli-
cated yield trials under drought and selected lines as candidates to the 28th SAWSN.  Next year and onward, we will have 
two years of yield testing, 1 = PYT, second = candidate.  This will save one year in the breeding scheme.

We also are working at reducing the timeframe of the early generation phase.  Formerly at CIMMYT, selected 
bulks were running until the F6, then F6:7 head-rows were derived, and selected to Advanced Lines (ALs) or PYT from 
Obregon and Toluca.  One if the first changes made in 2007 was to debulk all F5s and F6s from Toluca to give F5:6 and 
F6:7 head-rows in Obregon.  In 2007, we also debulked the best looking F4 crosses.  We had in total 18,618 F5, F6, and 
F7 head-rows in Obregon from which we selected 3,716 ALs (selection rate 20%) from which we selected 2,147 PYTs. 
This process allows all lines promoted to PYT to be selected for good agronomic type and leaf and stem rust resistance 
in Obregon and for good agronomic type, and leaf and stripe rust and S. tritici resistance in Toluca and El Batan.  Given 

table 13.  Evaluation of crosses made by combining complementary, drouth-adaptive physiologica traits (PT) and 
conventional crosses for three consecutive years  (2006–08) in the 27th Semi-arid Wheat Screening Nursery (SAWSN) 
evaluated in northwest Mexico.

candidates to 27th sawsn
number of 

lines

full irrigation
obregon 2008

Group ave
% tacupeto

drought
obregon 2008

Group ave
% vorobey

drought
obregon 2007

Group ave
% vorobey

drought
obregon 2006

Group ave
% tacupeto

Conventional crosses 157 95.1 90.4 95.5 103.1
PT crosses 48 94 92.8 97.9 107.7
LSD 5% Not significant 2.4 2.4 4.6
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that most F4:5 rows selected in Obregon in 2008 showed good uniformity, we pursued the process, and this year debulked 
all F4s and F5s to head-rows in Obregon.

Table 14 shows the evolution of the breeding scheme.  We have saved one and a half years in the breeding 
scheme, reducing the whole cycle from 7 to 5.5 years.  This process reduces the bulk phase.  The advantages of the se-
lected bulk scheme are clear in term of simplicity and cost-saving, however it also brings some risks: 

1.  drifting towards tallness because of loss of height reference when selecting plants within the bulks (unless 
planting specific checks) and

2.  drifting towards lateness, when strong selection for disease resistance is made, unless special attention is 
given to grain filling and earliness (which we try to do).

The breeder cannot select all the plants himself in the bulks. He needs, however, to check all crosses before in-
dividual plant selection starts and decide to either discard crosses when no good plants can be found or make sure many 
plants are selected in the good crosses, to maintain good genetic variability, especially for quantitative traits such as yield 
and quality, and give enough options to the breeder for head-row selection.  If this work is not done, the risk is that all 
crosses will be treated in the same way, giving too much importance to bad or mediocre crosses and not enough empha-
sis on the best ones.

Another innovation of the scheme is a pedigree step at the AL phase.  From the head-rows selected in Obregon, 
we derive a family of four head-rows planted in El Batan.  Bulks from head-rows are sown and selected in Toluca.  The 
head-rows of the best families selected in Toluca are selected in El Batan, giving one more generation to select for uni-
formity and exploiting additional genetic variation in the good-looking families.  With this two-step process of head-row 
selection, we may pursue the reduction of the selected bulk phase, debulking also from the F3 next year the best looking 
F3 populations or back-crosses (equivalent to F4), further reducing the breeding cycle by six months.

me6 (high-latitude) crossing and breeding strategy.  Until 2007, crossing for the ME6 was split equally between 
crossing for North Kazakhstan and western Siberia (KASIB) and crossing for the other ME6 regions, e.g., China’s 
Heilonjiang province and Canada.  The wheat-growing area in Heilonjiang is quite a small, less than a 106 ha, in com-
parison to the KASIB area, about twenty millions.  Canadian wheat breeders have very stringent market quality require-
ments, therefore the CIMMYT ME6 breeding material would have very little chance of development in Canada.  For 
these two reasons, we have stopped ME6 crossing for other regions than KASIB and doubled the breeding effort for 
KASIB.  We now make about 100 back or top-crosses per cycle, about 200 crosses per year for North Kazakhstan and 
Siberia.  The High Latitude Wheat Screening Nursery will be discontinued.

table 14.  Evolution of the new CIMMYT, Mexico, breeding scheme (Ob = Obregon, To = Toluca, and Ba = El Batan 
nursery sites; YT = yield trial, AL - advanced line).

Year station old scheme new scheme station old scheme new scheme
1 Obregon Crossing Crossing Toluca Crossing Crossing
1 Toluca F1 F1 Obregon F1 F1

2 Obregon F2 F2 Toluca F2 F2

2 Toluca F3 F3 Obregon F3 F3

3 Obregon F4 F4 Toluca F4 F4

3 Toluca F5 F5 Obregon F5 Head-rows
4 Obregon F6 Head-rows Toluca/El Batan F6 ALs head-rows
4 Toluca/El Batan ALs ALs head-rows Obregon Head-rows PYT
5 Obregon PYT PYT Toluca/El Batan ALs
5 Toluca/El Batan Obregon PYT YTC
6 Obregon YT YTC Toluca/El Batan
6 Toluca/El Batan Obregon YT
7 Obregon YTC Toluca/Ba
7 Toluca Obregon YTC
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Like the ME4, a large part of the ME6 crosses is dedicated to resistance to Ug99.  However, as opposed to ME4, 

ME6 Ug99 breeding focuses more on the use of major genes because of the risk of Ug99 spreading in KASIB seems 
lower than in South Asia, so major genes could bring an acceptable solution at the moment, and because most KASIB 
cultivars are highly susceptible to stem rust, and breeding with APR would be very difficult in Kenya with photoperiod-
sensitive, ME6 material.

KASIB yield data analysis presented at the KASIB meeting held in Pavlodar in August ,2008, showed that there 
is little ‘G x E’ in the region, making it possible to find high-yielding lines/cultivars with broad adaptation.  These lines 
will have priority use for crossing.  The correlation analysis showed that some sites predict better global performance 
than others, in particular Omsk in Siberia and Karabalyk in North Kazakhstan.  Until 2008, material selected in Mexico 
was sent only to Shortandy.  From 2009, it will be sent to Omsk and to Karabalyk as well.  Shuttle materials will be 
selected from the data and observations collected at these two sites, and then sent to all breeders of the KASIB network. 

inifap, campo experimental valle del YaQUi
apdo. postal 155, km 12 norman e. Borlaug, entre 800 y 900, valle del Yaqui, cd. 
obregón, sonora, méxico cp 85000.

cimmYt int.
km 45 carret. méxico-veracruz, el Batán, texcoco, edo. de méxico cp 56130.

Reaction of durum wheats to black point in southern Sonora, Mexico.

Guillermo Fuentes-Dávila, Pedro Figueroa-López, Karim Ammar (CIMMYT), Juan Manuel Cortés-Jiménez, Pedro 
Félix-Valencia, and Víctor Valenzuela-Herrera.

introduction.  More than 100 species of fungi, including Alternaria, Fusarium, and Helminthosporium spp., can be 
isolated from newly harvested wheat grain.  These fungi are most important in humid field environments, where they 
infect seed when relative humidity exceeds 90% and seed moisture content exceeds 20%.  Rainfall during seed matura-
tion favors black point (BP), as well as humid weather prevailing for a few days prior to harvest (Prescott et al. 1986).  
Expanding green kernels are most susceptible.  Premature seed senescence also promotes BP because many of the fungi 
are saprophytic (Wiese 1987).  Alternaria alternata and Bipolaris sorokiniana are generally considered the primary 
causal agents of the disease (Mathur and Cunfer 1993).  Infected ears may look normal, but there may be elliptical, 
brown to dark brown lesions on the inner side of the glumes.  The disease is more pronounced as brown to dark brown 
or blackish, localized discolored areas, usually around the embryo end of seeds (Adlakha and Joshi 1974; Hanson and 
Christensen 1953; Rana and Gupta 1982; cited by Mathur and Cunfer 1993).  The discoloration also may occur near the 
brush, in the crease or any part of the seed and may be light or dark or with a distinct margin.  Severe infection causes 
discoloration and shriveling of the whole seed (Adlakha and Joshi 1974).  In southern Sonora, Mexico, black point is an 
endemic disease of durum and bread wheat, although incidence is variable from year to year.  Wheat-breeding programs 
select for disease resistance during seed evaluation after harvest, however, there is not a formal project on BP in Sonora.  
The objectives of this work were to evaluate the reaction of durum wheat elite advanced lines, pre- and candidate lines 
for commercial release, and commercial cultivars to BP after harvest in year 2008.

materials and methods.  The materials evaluated consisted of various nurseries.  The evaluation was by visual inspec-
tion taking in to consideration the relative amount of affected grains in the sample, but without considering the area or 
the percentage of affected area.  The rating scale was as follows:  0 = healthy grains, 1 = low incidence of black point, 2 
= moderate, and 3 = high incidence.  The following nurseries were evaluated:  a) Advanced Yield Trial consisting of 171 
entries planted on 15 November, 2007, in block 810, in a clay soil with pH 7.5; 100 g per entry were analyzed; b) pre-
candidate lines for commercial release consisting of 62 entries, planted on 27 December, 2007, in block 910, in a heavy 
sandy clay loam soil, pH 7.5; grains from five spikes were evaluated; c1) commercial cultivars, four groups with five 
replications (four spikes each) of Altar C84 and Júpare C2001 planted on 22 November, 2007, in block 710, in a clay soil 
with pH 7.8; c2) commercial cultivars Altar C84, Nacori C97, Rafi C97, Atil C2000, Júpare C2001, Samayoa C2004, and 
Banamichi C2004, planted on 15 November, 2007, in block 810, 100 g were evaluated; c3) commercial cultivars Júpare 


