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INTRODUCTION
9. Laboratory Designators
Add to Designators:
daw Michael Francki
 Department of Agriculture and Food
 3 Baron Hay Court
 South Perth
 WA 6151
 Australia

ncs Paul Murphy
 NCSU Small Grains Breeding Laboratory
 Dept of Crop Science
 NCSU
 Raleigh, NC  27695
 USA

ncw Gina Brown-Guerdira
 Eastern Regional Small Grains Genotyping Laboratory
 USDA–ARS, North Carolina State Uuniversity–Crop Science
 Raleigh, NC  27695-7620
 USA

rwg Steven S. Xu
 USDA–ARS Cereal Crops Research Unit
 Northern Crop Science Laboratory
 1307 18th Street North
 Fargo, ND  58105
 USA
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rwgs Steven S. Xu, Ph.D.
 USDA–ARS Cereal Crops Research Unit
 Northern Crop Science Laboratory
 1307 18th Street North
 Fargo, ND 58105
 USA

stm Matthew Hayden
 DPI, Victorian AgriBiosciences Centre
 Park Drive
 Bundoora
 Vic 3083
 Australia

wgc Xiwen Cao
 Wheat Genetics and Cytology 
 USDA–ARS Cereal Crops Research Unit
 Northern Crop Science Laboratory
 1307 18th Street North
 Fargo, ND  58105
 USA

Morphological and Physiological Traits

1. Gross Morphology:  Spike characteristics 
1.1. Squarehead/spelt 
Q.  bin:  5AL-17 {10541}.

1.2. Club/Compact spike 
C. Add to chromosome location:  , probably 2DL {10578}.  
 bin:   C-2DS1 – C-2DL3, markers flanking C were located on either side of the centromere {10578}.
 v:   Coda {10578}; Corrigin {10578}.
 ma:   Coda / Brundage:  Xwmc144-2D – 1 cM – C – 8 cM – Xwmc18-2D; Corrigin / CS (Ae. tauschii 2D)  

 {10578}:  Xwmc245-2D – 1 cM – Xcfd116-2D / Xgwm358-2D / C / Xcfd-2D – 1 cM – Xbarc145-2D 
  {10578}.
Add note: 
C may be orthologous to gene Sog for soft glumes on chromosome 2Am {10578}.
Add at the end of the section:
Tetraploid wheat:  A compact spike gene C17648 in mutant line MA 17648 was located in chromosome 5AL {10541}. 
Xbarc319-5A – 9.7 cM – C17648 – 24.8 cM – Xgwm179-5A {10541}.  C17648 was distal to the Q locus {10541}. 

1.3. Sphaerococcum
s B1b. Add:  […, s16219 {10541}].   tv:  MA 16219 {10541}.

1.4. Branched spike
Replace the previous entry with the following:
Synonyms:  branched spike, four-rowed spike, multi-rowed spike, supernumerary spikelet, tetrastichon spikelet.
Branched spike and multi-rowed spike are phenotypes involving the presence of supernumerary spikelets or the presence 
of additional spikelets at rachis nodes.  A similar condition in rye is known as ‘monstrosum ear’ (reviewed in {10637}).  
Genetic studies of branched spike in tetraploid and hexaploid wheats indicate that the phenotype is recessive, involves 
one or more genes, and is strongly influenced by environmental effects.  Comparative genetic studies suggest an ortholo-
gous gene series in homoeologous group 2 {10637}.
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bh-a1 {10637}. bh {665}. 2AS {665}. tv:   PI 349056 {665}.
bh-d1 {10637}. mrs {10637}. 2DS {10637}. bin: 2DS-5 0.47-1.0 {10637}.
 v:  Ra1 {10637}; Ruc163-1-02 = ‘Ra1 / ZGK242-81’ {10637}; RUC163167-1-02 = ‘Alana /3/ Ra1/
      ZGK242-82 // Ra1’ {10637}.
 ma:   Xwmc453-2D/ bh-D1 – 7.8 cM – Xgwm988-2D {10637}; Xwwm484-2D – 3.3 cM – 
  Xwmc453-2D/bh-D1 – 3 cM – Xgwm988-2D {10637}.
Ra1 is a mutant stock maintained at the NI Vavilov Research Institute of Plant Industry, St Petersburg, Russian Federa-
tion.  
A chromosome 2B gene of minor effect was identified {9907}.  In a monosomic analysis of the hexaploid line LYB with 
supernumerary spikelets, Peng et al. {9908} located recessive genes on chromosomes 2A and 4A that promote the devel-
opment of supernumerary spikelets and a gene on chromosome 2D that prevents their expression.

bh-r1 {10637}. mo {see 10637}. 2R {10637}. al:   S. cereale D40 {10637}.
 ma:   Xrms056-2R – 15.7 cM – bh-R1 – 10.7 cM – Xcfe209-2R {10637}.

1.7. Multi-gynoecium
Synonym: three pistils (TP)
This trait describes a dominant phenotype consisting of three kernels within each wheat floret; that is, the flower consists 
of three separate ovaries, three anthers, and two lodicules.

pis1 {10636}. 2DL {10636}. Bin:  C-2DL3-0.49 {10636}.
 v:   TP Mutant {10636}.
 ma:   Xgwm539-2D – 17.6 cM – Pis1 – 19.5 cM – Xgwm349-2D {10636}.

4. Aluminium Tolerance
QTL:
FSW (Al tolerant) / ND35 (Al sensitive):  Three QTL for tolerance, Qalt.pser-4DL co-segregating with Xups4, a marker 
for the promoter of the ALMT1 gene; Qalt.pser-3BL (Xbarc164-3B – Xbarc344-3B); and Qalt.pser-2A (Xgwm515-2A – 
Xgwm296-2A {10605}.

Add at end of section:
In D-genome introgression lines of Chinese Spring, a major QTL was located in the interval Xgwm125-4D – Xgwm976-
4D, R2 = 0.31 {10598}, probably coinciding with Alt2.  A second QTL from CS, Qaltcs.ipk-3B, R2 = 0.49, occurred in 
interval Xgwm1029-3BL – Xgwm1005-3BL in a ‘CS / CS (Synthetic 3B)’ population (10598}.

6. Awnedness
6.1. Dominant inhibitors.
6.1.2. Tipped 1
B2. tv:   LD222 {10541}. matv:  Xgwm291-5A - 8.0 cM - B1 {10541}.

 ma:   Xcfd71-4A – 10.3 cM – Ba – 16.5 cM – Xcfa2173-4A {0802}3.

17. Dormancy (Seed)
Vivipary
Following the present material add:
Alleles of Vp-B1 were recognized using STS marker Vp1B3 {10615,10621}.
Vp-B1a {10615}. Sequence AJ400713 {10615}.
 v:  Charger {10616}; Zhongyou 9507 {10615}; 271 accessions {10616}.
Vp-B1b (10615}. 193-bp insertion in third intron relative to Vp-A1a.
 v:  Altria {10616}; Recital; {10616}; Yongchuanbaimai {10615}; 2 accessions {10616}.
Vp-B1c {10615}. 83-bp deletion relative to Vp-B1a.
 v:  Scipion {10616}; Xinong 979 {10615}; 101 others {10616}.
Vp-B1d {10616}. 25-bp deletion relative to Vp-A1a.
 v:  Cezanne {10616}; Jason {10616}; 97 others {10616}.
Vp-B1e {10621}. 83-bp deletion, 4-bp insertion, and 2 SNPs relative to Vp-B1a {10621}.
 v:  Hongheshangtou {10621}. 
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There was a suggestion of a relationship between alleles and PHS response {10615}.  Vp-B1 allelic identifications for 
Chinese landraces, historical and current wheat cultivars are listed in {10621}.

Pre-harvest sprouting:
QTL:
Insert as the third line in paragraph 2:
In ‘AC Domain (red seeded, PHS resistant) / RL4137 (white seeded, PHS moderately resistant)’ most measures of PHS 
occurred as clusters at the R loci.  However, QSi.crc-5D for sprouting index, R2 = 0.44, was independent of seed color 
{10626}.
Inset before the last paragraph:
‘CN10955 (PHS resistant white seeded) / Annuello (PHS susceptible, white seeded)’ F8 RIL population:  QPhs.dpivic-
4A.2 in the Xgwm637-4AS – Xgwm937/Xgwm894-4AL region and QPhs.dpivic-4A.1 in the Xwmc48-4AS – Xgwm397-
4AS region {10599}.

‘Rio Blanco (white seeded, PHS resistant) / NW97S186 (white seeded, PHS susceptible)’ RIL population:  QPhs.pseru-
3AS, R2 = 0.41, Xgwm369-3A – Xbarc12-3A, and one minor QTL (10634}.  This major QTL was confirmed in a Blanco / 
NW98S079 RIL population, R2 up to 0.58 {10634}. 

20. Flowering Time
Insert above the entry for QFlt.ipk-3A:
Spring wheat cross:  ‘Nanda 2419 / Wangshuibai’:  Seven QTL for flowering time identified with earlier alleles for five 
coming from Nanda 2419:  QFlt.nau-1B (closest marker Xbarc80-1B, R2 = 11%), QFlt.nau-1D (Xbarc62-1D, Xgwm232-
1D, R2  = 6–13%), QFlt.nau-2B (Xwmc35-2B, R2 = 10%), XFtl.nau-2D (Xwmc601-2D, R2 = 10%), XFtlnau.4A.1 
(Xcfd2-4A, Xmag1353-4A, R2 = 10%), XFtl.nau-4A.2 ( Xmag3386-4A, Xwmc161-4A, R2 = 18–19%), and XFlt.nau7B 
(Xmag2110-7B, Xmag1231-7B, Xgwm537-7B, Xwmc218-7B, R2 = 18%) {10566}.

Following the QFlt.ipk-3A entry list the following gene:
QFt.cri-3B.1 {10567}.  Nearest marker Xbarc164-3B; identified in crosses of substitution lines of Ceska Presivka and 
Zlatka or Sandra (10567}. 
 
26. Glaucousness (Waxiness/Glossiness)
26.2. Epistatic inhibitors of glaucousness
Iw2 bin:  2DS5-0.47-1.00 {10578}.
 ma:  Xcfd56-2D – 6 cM – Iw2 – 10 cM – Xcfd51-2D {10578}. 

Add at end of section:
A dominant gene (Vir) for nonglaucousness was located in chromosome 2BL of cultivar Shamrock, a derivative of T. tur-
gidum subsp. dicoccoides (10543).  This gene mapped 2 cM distal to Xgwm614-2B {10543}, whereas the W1/Iw1 locus 
was placed distal to Xgwm614-2B in {10189}.  Lines with Vir had delayed senescence (‘staygreen’) and an average yield 
advantage over their glaucous sibs {10543}. 

27. Glume Colour and Awn Colour 
27.1. Red (brown/bronze/black) glumes
rg-a1b. ma: Add: Xgmw1223-1A/Rg-A1/Hg - 2.2 cM - Xgwm136-1A - 4.2 cM - Xgwm33-1A {10635}.
rg-a1c. v: TRI 14341 {10638}.
 v2: Sears Synthetic Rg-D1c {10638}.
 ma: Rg-A1c – 0.7 cM – Xgwm1223-1A {10638}.
rg-B1b. v: Golubka {10635}.
 ma: Add: Xgwm1078-1B – 4.6 cM – Rg-B1 – 2.0 cM – MW1B002 (Gli-B1) – 4.1 cM – 
  Xgwm550-1B {10635}.
rg-d1b. v: ITMI Synthetic W7984 {10635}.
 v2: Sears Synthetic Rg-A1c {10638}.
 ma: Xgwm1223-1D – 6.6 cM – Rg-D1/Xksud14-1D – 13.9 cM – Xgwm33-D1 {10635}; 
  Rg-A1c – 3.9 cM – Xgwm1223-1D {10638}.
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28. Grain Hardness/Endosperm Texture
Add at end of section:
‘Neixiang 188 (hard) / Yanshan 1 (medium hard)’ RIL population:  QGh.caas-1B.1 with hardness allele from Yanshan 1, 
R2 = 0.28, Xwms153-1BL – Xbarc81-1BL {10640}.
 
29. Grain Quality Parameters
Add at the end of the preamble:
‘Neixing 188 / Yanshan 1’ RIL population:  75 QTL for five quality-related traits are reported in {10640}. 

29.2. Flour, semolina, and pasta colour
Add:
‘Huapei 3 / Yumai 57’:  DH lines: 18 additive QTL and 24 pairs of epistatic QTL affected flour colour parameters; qa-
1B, closely linked with Xbarc372-1B was associated with variation of a*, R2 = 0.256 {10625}.

29.8. Loaf volume
QTL:  Add:
A total of 30 QTL were located on 12 chromosomes, each of which explained between 5.85 and 44.69% of the pheno-
typic variation; the QTL of largest effect were located on chromosomes 6B and 6D {10659}.

29.10. Grain fructan content
Add:
Fructans are nondigestible carbohydrates considered to have health benefits to consumers.
QTL:
‘Berkut (high fructan concentration) / Krickauff (low fructan concentration)’:  QTL detected on chromosomes 2B, 3B, 
5A, 6D, and 7A of which QGfc.aww-6D.2 (R2 = 0.17, nearest marker, Xbarc54-6D) and QGfc.aww-7A.1 (R2 = 0.27, 
Xgwm681-7A) had the largest effects {10631}.

29.11. Water absorption
‘Neixiang 188 / Yanshan 1’ RIL population:  XAbs.caas-5D.1 with positive effects from Yanshan 1, R2 = 0.3, Xcfd189-
5DS – Xcfd189-5DS {10640}.

29.12. Chinese dry noodle quality
‘Chuan 35050 / Shannong 483’ RIL population:  three QTLs for noodle palate, elasticity, and smoothness clustered near 
Glu-D1 with beneficial effects associated with subunits 5+10 coming from Chuan 35050.  A very significant taste QTL, 
QStas.sdau-4A.1, and positive QTL for stickiness and total score also on chromosome 4A came from Shannong 483 
{10647}.

40. Height
40.1. Reduced height: GA-insensitive
rht-d1b. v:  Biscay {10574}; Pirat {10574}; Rubens {10574}.
 
40.2. Reduced height: GA-sensitive
rht12. bin:  5AL-23, based on co-segregation with B1 {1606}.

42. Hybrid Weakness 
42.1. Hybrid necrosis
ne2ms. v:  Mironovskaya {0995}.
Add references ‘,10627, 0995’ to the genotype list.

46. Leaf Tip Necrosis
ltn1. c:  See Lr34.
This gene is identical to Yr18, Pm38, and Ltn and confers stem rust resistance in some genetic backgrounds.

48. Male Sterility 
48.1. Chromosomal
ms1g {10546}. v:  Male sterile line 257A {10546}.



261

A n n u a l  W h e a t  N e w s l e t t e r            V o l.  5 5.
62. Response to Photoperiod
ppd-a1.  The present listing for Ppd-A1a should be entered as Ppd-A1.  
  ma: Xwmc177-2A – Ppd-A1, 2.2 and 2.8 cM in GS100/GS101 and GS105/GS104, 
          respectively {10612}.
 ppd-a1a {10612}. tv: GS100 {10612}; GS105 {10612}.
GS100 and GS105 had different deletions relative to GS101 and GS104, respectively, and both were consistently a few 
days earlier flowering than their near-isogenic counterparts with Ppd-A1b{10612}.
 Ppd-A1b {10612}. tv: GS101 {10612}; GS104 {10612}.
Ppd-B1. 
 ppd-B1a. i: H(C) = ‘Haruhikari*5 / Fukuwasekomugi’ {10611}, H(D) = ‘Haruhikari*/ 5 / 
   Fukuwasekomugi’ Ppd-D1a {10611}.
  v2: Fukuwasekomugi Ppd-D1a {10611}.
 ppd-B1b [{10611}]. v2:   Haruhikari Ppd-D1b[{10611}].
Ppd-D1. 
 Ppd-D1a. i: H(A) = ‘Haruhikari*5 / Fukuwasekomugi’ {10611}; ‘Haruhikari*5 / Saitama 27’
   {10611}, H(D) = ‘Haruhikari*/5 /Fukuwasekomugi’ Ppd-B1a {10611}
  v: Akagomughi {10622}: Mazhamai {10622}; Youzimai {10622}.
  v2:   Fukuwasekomugi Ppd-B1a {10611}.
Ppd-A1a was present in 39% of Chinese landraces and 97% of improved cultivars{10622}.
 Ppd-D1b [{10611}].  v:  Haruhikari  Ppd-B1b [{10611}].
According to {10611} the Ppd-B1 allele from Japanese wheats has a stronger effect than the allele from CS.
ppd-B2 {10628}. 7BS {10628}. su:   Favorit (F26-70 7B) {10628}.
   v:   F26-70 {0093}.
   ma: Xgwm255-7B – 20.7 cM – Ppd-B2 – 4.4 cM – Xgwm537-7B {10628}.
This gene confers earlier flowering under long photoperiod conditions {10628}.
 
65. Response to Vernalization
Add at the end of the Vrn section:
Allelic variations at the Vrn-1 and Vrn-B3 loci in Chinese wheat cultivars are summarized in {10617}.

XX. New section:  Soft Glumes
sog {10555}. 2AS {10555}. dv:  T. monococcum subsp. monococcum var. sinskajae ID69 {10555}.
   ma:  Co-segregation with AFLP loci Xe423204I and Xe373311 {10555}.
Sog {10555}.   dv: T. monococcum subsp. aegilopoides ID49 {10555}.
sog was considered to be an homologue of Tg1 and Tg2.  See Tenaceous glumes.

73. Tenacious Glumes
Add note after Tg2
Tg1 and Tg2 were considered to be homologues of sog for soft glumes in T. monococcum.  See Soft glumes. 
 
77. Yield and Yield Components
77.4. Grain yield
Nonglaucous (virescent) lines from a ‘Shamrock/Shango’ DH population had higher yields than glaucous sibs (10543}; 
see Glaucousness, subsection Epistatic inhibitors of glaucousness.
 

Proteins

79. Protein
79.1 Grain protein content
QGpc.ipk.7B {10628}. su: Favorit (F26-70 7B) {10628}.
  v: F26-70 {10628}.  Closely associated with Ppd-B2 {10628}.  See Response to 
   Photoperiod.
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79.2. Enzymes
79.2.33.1 Phytoene synthase 1 (EC 2.5.1.32)
This section is completely revised:

Homology with the same gene in rice (Psy1) {10230}.
Phytoene synthase is involved in the carotenoid biosynthetic pathway and influences yellow pigment content in grain 
(See Flour colour and Grain quality parameters: Flour, semolina and pasta colour).  The gene Psy-A1 was cloned and 
a functional marker developed from the sequence distinguishing Chinese common wheats with high and low pigment 
contents {10501}.  Most hexaploid wheat cultivars have a 676-bp insertion in intron four that is absent in the Austral-
ian cultivars Dundee, Raven, and Aroona with high yellow pigment.  The Psy-B1b allele from tetraploid wheat Kofa is 
the result of a B–A intergenomic conversion event that probably occurred in Cappelli ph1c mutant 1 {10530}.  An EMS 
mutation in the Psy-E1 gene is associated with whiter endosperm in lines carrying the Th. elongatum 7EL translocation.

psy1-a1 {10230}. 7AL {10230}. tv:  Kofa {10230}. 
  ma: Xwmc809-7A – 5.8 cM – Yp7A {10501}.
 psy1-a1a {10501}. v: Chinese Spring 10501}; CA 9648{10501}; Neixiang 188 {10501}; Chinese common
   wheats with high pigment content {10501}.
  c: GenBank EF600063 {10501}, EU096091 {10530}, Eu649788 {10654}.  No 37-bp
   insertion in intron 2 (194-bp fragment for marker Yp7A {10501}.  676-bp insertion in
   intron 4 {10530}.
  tv:   Blackbird {10653}. c: EF600063 {10653}.

 psy1-a1b {10501}. v: PH82-2 {10501}; Shaan 9314 {10501}; Xinong 336 {10501}. Chinese common
   wheats with low yellow pigment content {10501}.
  c:   GenBank EF600064 {10501}.  37-bp insertion in intron 2 (231-bp fragment for 
   marker Yp7A {10501}.  676-bp insertion in intron 4 {10530}.

 Psy1-A1c {10530}. v: M564 {10650}. 
  c: GenBank EU650391 {10650}; No 37-bp insertion in intron 2 and no 676-bp inser-
   tion in intron 4 {10530}.  High yellow pigment cultivars: Aroona (PI 464647)
   {10530}; Dundee (PI 89424, PI 106125) {10530}; Raven (PI 303633, PI 330959)
   {10530}.
 psy1-a1d {10651}. tv: Langdon {10651}; T. turgidum subsp. dicoccum DM28 {10652}.
  c: GenBank EU263018 {10651}; FJ 393515 {10652}.
 psy1-a1e {10651}. v: Sunco {10654}. tv: DR8 {10651}.
  c: EU649791 {10654}; EU263019 {10651}.
 psy1-a1f {10652}. dv: T. urartu PI 428326 {10652}. c:  FJ393516 {10652}.
 psy1-a1g {10652}. dv:   T. urartu UR1 {10652}. c: FJ393517 {10652}.
 psy1-a1h {10652}. dv:   T. monococcum subsp. aegilopoides BO1 {10652}; T.monococcum subsp. 
   monococcum MO5 {10652}.
  c: FJ393518 {10652}; FJ393519 {10652}.
 psy1-a1i {10652}. dv:   T. monococcum subsp. monococcum MO1 {10652}.
  c: FJ393520 {10652}.
 psy1-a1j {10652}. dv:   T. monococcum subsp. monococcum MO2 {10652}.
  c: FJ393521 {10652}.
 psy1-a1k {10652}. v:   Spelt 167 {10652}.
  tv:   T. turgidum subsp. dicoccoides DS3 {10652}; T. turgidum subsp. dicoccum DM37
   {10652}.
  c: FJ293527 {10652}; FJ393522 {10652}; FJ393523 {10652}.
 psy1-a1l {10652}. tv: Kofa {10230,10530}; Strongfield {10653}; T. turgidum subsp. dicoccoides DS6
   {10652}.
  c: EU096090 {10230,10530}; FJ393524 {10652}.
 psy1-a1m {10652}. tv: T. turgidum subsp. dicoccum DM26 {10652}.
  c: FJ393525 {10652}.
 psy1-a1n {10652}. v: Spelt SP9 {10652}. c: FJ393526 {10652}.
 psy1-a1o {10653}. tv: Commander {10653}. c: FJ234424 {10653}. 
 psy1-a1p {10654}. v: Tasman {10654}. c: EU649792 {10654}.
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 psy1-a1q {10654}. v: Cranbrook {10654}. c: EU649793 {10654}. 
 psy1-a1r {10654}. v: Halberd {10654 }. c: EU649794 {10654}.
 psy1-a1s {10654}. v: Schomburgk{10654}. c: EU649795 {10654}.
psy1-B1 {10230}. 7BL {10230}. tv: Kofa {10230}.
  ma: Xcfa2040-7B – 12 cM – Psy-B1 – 5 cM – Xgwm146-7B {10230}.
 psy1-B1a {10650}. v: Chinese Spring {10530,10650,10654}; Spelt SP9 {10652}.
  tv: T. turgidum subsp. dicoccoides DS4 {10652}; FJ393529 {10652}; FJ393528
   {10652}.
  c: EU650392 {10650}; EU096094 {10530}; EU649789 {10654}.
 psy1-B1b{10650}. v: Neixiang 188 {10650}. c: EU650393 {10650}. 
 psy1-B1c {10650}. v: CA 9648 {10650}. c: EU650394 {10650}. 
 psy1-B1d {10650}. v: Ning 98084 {10650}. c: EU650395 {10650}.
 psy1-B1e {10650}. v: M484 {10650}. c: EU263021 {10650}.
  tv:   DR8 {10650}; T. turgidum subsp. dicoccum DM28 {10652}.
  c: EU263021 {10650}; FJ393541{10652}.
 psy1-B1f {10651}. tv: Langdon {10651}. c: EU263020 {10651}.
 psy1-B1g {10651}. tv: DR1 {10651}; T. turgidum subsp. dicoccoides DS6 10652}.
  c: EU650396 {10651}; FJ393530 {10652}.

 psy1-B1h {10652}. tv: T. turgidum subsp. dicoccoides DS3 {10652}.
  c: FJ393531 {10652}.
 psy1-B1i {10652}. tv: T. turgidum subsp. dicoccoides DS8 {10652}.
  c: FJ393532 {10652}.
 psy1-B1j {10652}. tv: T. turgidum subsp. dicoccum DM26 {10652}.
  c: FJ393533 {10652}.
 psy1-B1k {10652}. tv: T. turgidum subsp. dicoccum DM33 {10652}.
  c: FJ393534 {10652}.
 psy1-B1l {10652}. tv: T. turgidum subsp. dicoccum DM37 {10652}.
  c: FJ393535 {10652}.
 psy1-B1m {10652}. v: Spelt 167 {10652}. c: FJ393540 {10652}.
  tv: T. turgidum subsp. dicoccum DM47 {10652}.
  c: FJ393539 {10652}.
 psy1-B1n {10530}. Previously designated Psy1-B1b {10656}.
  tv: Kofa c: EU096092 {10530}; DQ642439 {10230}.
 psy1-B1o {10530}. Previously designated Psy1-B1a {10656}.
  tv: UC1113 {10530}; W9262-260D3 {10230}.
  c:   EU096093 {10530}; DQ642440 {10230}.
psy1-d1{10652}. 7DL{10652}.    
 psy1-d1a {10652}. v: Chinese Spring {10652}. c: EU650397 {10652}; EU649790 {10654}.
 psy1-d1b {10652}. dv: Ae. tauschii Ae34 {10652}. c: FJ393542 {10652}.
 psy1-d1c {10652}. dv: Ae. tauschii Ae46 {10652}. c: FJ393543 {10652}.
 psy1-d1d {10652}. dv: Ae. tauschii Y99 {10652}. c: FJ393544 {10652}.
 psy1-d1e {10652}. v: Spelt SP9 {10652}. c: FJ393545 {10652}.
 psy1-d1f {10652}. v: Spelt217 {10652}. c: FJ393546 {10652}.
 psy1-d1g {10652}. v: Zhongliang 88375 {10652}. c:  FJ807498 {10652}.
 psy1-d1h {10652}. dv:   Ae. tauschii Ae37 {10652}. c: FJ807499 {10652}.
 psy1-d1i {10652}. dv:   Ae. tauschii Ae38 {10652}. c: FJ807500 {10652}.  
 psy1-d1j {10652}. dv:   Ae. tauschii Ae42 {10652}. c: FJ807501 {10652}.
 psy1-d1k {10655}. v: Nongda 3291 {10655}. c: FJ807495 {10655}.
 psy1-d1l {10655}. v: E 86642 {10655}. c: FJ807496 {10655}.
 psy1-d1m {10655}. v: Ning 97-18 {10655}. c: FJ807497 {10655}.

psy1-s1 {10652}. al: Ae. speltoides Ae48 {10652}.  
 psy1-s1a {10652}. al: Ae. speltoides Ae48 {10652}. c:  FJ393536 {10652}.
 psy1-s1b {10652}. al: Ae. speltoides Ae49 {10652}. c:  FJ393537 {10652}.
 psy1-s1c {10652}. al:   Ae. speltoides Y162 {10652}. c:  FJ393538 {10652}.
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79.2.34. Polyphenol oxidase
This section is completely revised:

High PPO activity in kernels and flour leads to a time-dependent discoloration of end products such as noodles, pasta and 
breads.
Primers different from those in {10386} were developed in {10504}, but their ability to distinguish phenotypic group-
ings (alleles) were similar. A null allele of Ppo-D1 was identified for this locus using primer pair WP3-2 {10504}.

ppo-a1 {10386}. PPO-2A {10385}. 2AL {10385}.
  ma: Detected with STS markers PPO18 {10385} and PPO33 {10386};  Xgwm321-2A –
   1.4 cM – Ppo-A1 – 5.8 cM – Xgwm294-2A {10385}.
 Ppo-A1a {10386}.  PPO-2Aa {10385}.
  v: Nongda 139 {10386}. Zhongyou 9507 {10385,10386,10504}; others {10386, 10504}.
  c: EF070147 {10386}.
Wheats with this allele tend to have higher PPO activity {10385, 10386}.
 Ppo-A1b {10386}. PPO-2Ab {10385}.  
  v: Chinese Spring {10386}. CA 9632 {10385,10386}; Nongda 183 {10504}; others 
   {10386, 10504}.
  tv:  T. turgidum subsp. dicoccoides DS4 {10386}.
  c: EF070148 {10386}.
Wheats with this allele tend to have lower PPO activity {10385,10386}.
 Ppo-A1c {10657}. dv: T. urartu UR1 {10657}. c: EU371651 {10657}.

 Ppo-A1d {10657}. dv: T. monococcum subsp. aegilopoides BO1 {10657}.
  c:   EU371652 {10657}.
 Ppo-A1e {10657}. tv:   DR8 {10657}. dv: T. monococcum subsp. monococcum MO1 {10657}.
  c:   EU371653 {10657}.
 Ppo-A1f {10657}. tv:   T. turgidum subsp. dicoccoides DS3 {10657}. 
  c: EU371654 {10657}. 
 Ppo-A1g {10657}. tv: Langdon {10657}. c: EU371655 {10657}.
Ppo-B1 {10658}. v: Chinese Spring {10658}. 
 Ppo-B1a {10658}. v: Chinese Spring {10658}. c: GQ303713 {10658}.
ppo-d1 {10386}. ma:   Detected with primers PPO16 and PPO29.  Xwmc41-2D – 2.0 cM – Ppo-D1{10386}.
 Ppo-D1a {10386}. v:   Chinese Spring {10386}. Zhonghou 9507 {10386,10504}; others {10386,10504}.
  c:   EF070149 {10386}.
Wheats with this allele tend to have lower PPO activity {10386}.
 Ppo-D1b {10386}. v: CA 9719 {10386}; CA 9632 {10386); Nongda 183 {10504}; others {10386,10504}.
  c: EF070150 {10386}.
Wheats with this allele tend to have higher PPO activity {10386}.
 Ppo-D1c {10657}. dv: Ae. tauschii Ae38 {10657}. c:   EU371656 {10657}.
 Ppo-D1d {10657}. dv: Ae. tauschii Y59 {10657}. c:   EU371657 {10657}.
 Ppo-D1e [{10504}]. [Ppo-D1null {10504}]; Ppo-D1c {10656}.
  v: Gaiyuerui {10504}; Zm2851 {10504}. XM2855 {10504}; 9114 {10504}.
Wheats with this allele tend to have lower PPO activity {10504}.

79.2.36.  Polygalacturonase-inhibiting proteins
PGIPs are leucine-rich repeat (LRR) proteins involved in plant defense.
pgip-a1 [{10608}]. Tapgip3, AM180658 {10608}. dv:  T. monococcum PI 538722 {10608}.
Not expressed in T. urartu PI 428315 (AM884191 {10608} or in polyploid wheat because of inactivation by an inserted 
copia transposon in the fourth LRR {10608}.

pgip-B1 [{10608}].  Tapgip1 {10610}. 7BS {10610, 10608}.
  ma:   XS13M50-7B – 5 cM – Pgip-B1 – 11.7 cM – Xmgb105s-7B {10608}.
 Pgip-B1a [{10608}] . Tapgip1a {10608}. tv:  Messapia {10608}.
 Pgip-B1b [{10608}]. Tapgip1b, AM884195 {10608}. tv:  T. turgidum subsp. dicoccoides MG4343 {10608}.
This nonexpressed allele produces a large amplicon in Southern blots using the pgip sequence as probe due to an inser-
tion of a Vacuna mutator element {10608}.
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Pgip-D1 [{10608}].  Tapgip2 {10610}. 7DS {10610}.
  tv:  Langdon 7D(7A) {10610}; Langdon 7D(7B) {10610}.

Endosperm Storage Proteins
77.3.1. Glutenins
77.3.1.1. glu-1
glu-a1
glu-a1y
Correction:  The subunit encoded by this allele should be 2 and not 2’’ as currently listed.

Add note to the end of the Glu-A1 section:
Primers were designed that enabled Ax2* to be distinguished from Ax1 or Ax-null {10641}.

glu-B1
Add:
glu-B1bp {10643}. 7**+8 {10643}. v: XM1368-2 {10643}.
    v: XM1404-2 {10643}.
Glu-B1bq {10643}. 7+8** {10643}.

glu-d1 
glu-d1f
Add note:
Glu-D1f is present at high frequencies in wheats of southern Japan.  Its presence may be associated with white salted 
noodle (Udon) quality {0936}.
Add:
glu-d1bs {10642}. 1.6t+12.3t {10642}. dv: Ae. tauschii TD16 {10642}.  
glu-d1bt {10568}. 2.1t+12t {10568}. v: Syn 396 {10568}.

Add note to the end of the Glu-D1 section:
Primers were designed that enabled Dx2 to be distinguished from Dx5 and Dy10 from Dy12 {10641}.

glu-a1-1
glu-a1-1x
The subunit encoded by this allele should read 2 and not 2’’ as currently listed. 

glu-B1-1
Add:
glu-B1-1ag {10643}. 7** {10643}. v: XM1368-2 {10643}.

glu-B1-2
Add:
glu-B1-2ag {10643}. 8** {10643}. v: XM1404-2 {10643}.

glu-d1-1
Add:
glu-d1-1v {10642}. 1.6t {10642}. dv: Ae. tauschii TD16 {10642}.

glu-e1
Add:
Glu-E1a [{781}].   ad: CS/L. elongatum W0622 [{781}].
Glu-E1b [10644].   ad: Langdon/L. elongatum DGE-1 {10644}].
    al: L. elongatum PI 531719 {10644}.
Add note to the end of the Glu-E1 section:
Four {10660, 10661} and 11 {10662} alleles were observed in Agropyron elongatum (Ee genome, 2n = 10X = 70) and 
named Aex1 to Aex5 (producing x-type subunits) and Aey1 to Aey 10 (producing y-type subunits). Aex4, Aey7, and Aey9 
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were very similar to three alleles in the diploid progenitor Lophopyrum elongatum {10439, 10663}.  The C-terminal 
regions of three of the y-type subunits (products of Aey8, Aey9 and Aey10) were more similar to x-type subunits than to 
other y-type subunits {10662}.  The subunit from Aex4 contained an additional cysteine residue, which may be associ-
ated with good processing quality in wheat introgression lines {10662}.  Allele Aey4 was a chimeric gene formed by 
recombination of two other genes {10662}.

79.3.1.3. glu-3
glu-d3
Add:
glu-d3f {10548}. v: Cheyenne {10548}.
glu-d3g {10558}. v: Hira-1 {10558}.
glu-d3h {10558}. v: India 115 {10558}.
  
glu-d3i {10558}. v: Bolac {10558}.
glu-d3j {10558}. v: Hira-2 {10558}.
glu-d3k {10558}. v: Lincoln {10558}.

79.3.2. Gliadins
Add note to the end of the text appearing after the Gli-DT1 locus:
A 1,200-bp DraI RFLP was identified as a gene-specific probe for the T1 omega-gliadin {10645}.
Add:
79.3.2.7 gli-7
gli-a7 {10547}. 1DS {10547}. dv: AUS18913 {10547}.
The gamma-gliadin encoded by this locus co-segregated with the T1 omega-gliadin encoded by the Gli-DtT1 locus 
(currently included in the Catalogue as locus Gli-DT1).  Gli-A7 was located 0.69 cM from Gli-Dt1 {10547}.

79.5.6. Waxy proteins
Wx-A1.
 Wx-A1c. v: Pakistan Zairaishi selection {10629}. 
 Wx-A1e. tv: KU 3659 {10629}. 
 Wx-A1g. Wx-A1’ {10587}. v: T. aestivum subsp. spelta accessions PI 348576
     {10587}; PI 348476 {10587}; 
     2778 Epeautre Noir Velu {10587}.
Wx-B1.
 Wx-B1c. v: Chousen 40 {0094}; Junguk 12 {10629}; Cikotaba {10629}; AF24 {10629}.
 Wx-B1d. tv: KU4213D {10629}.
 Wx-BS1g {10587}. al: Ae. speltoides 33 {10587}.
 Wx-BSL1h {10587}. al: Ae. longissima 12 {10587}.
Wx-D1.
 Wx-DDN1g {10587}. al: Ae. ventricosa 12 {10587}.

79.5.8. Puroindolines and grain softness protein
pinb-d1ac 10570}.   v: Kashibaipi {10570}; Red Star {10570}.
G to A substitution at position 257 and C to T substitution at position 382 {10570}.

Pathogenic Disease/Pest Reaction

81. Reaction to Blumeria graminis DC. 
81.1. Designated genes for resistance
pm4  
 pm4b. ma: STS241 – 4.9 cM – Pm4b – 7.1 cM – SRAP Me8/Em7220 – 4.7 cM – Xgwm382-2A 
   {10553}.
 pm4c {10583}. Pm23 {1618}. 2AL {10583}; earlier reported on 5AL {1618}.
  v2: 81-7241 Pm8 suppressed {10583,1618}.
  ma: Xbarc122-2A – 1.4 cM – Pm4c – 3.5 cM – Xgwm356-2A {10583}.
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pm5.   
 pm5a. v2: Saar Pm38 Pm39 {10481}.
 pm5d 7BL, FL 0.86 {10542}.  v:  Dream {10542}.
  ma: Xgwm611-7B – 2.1 cM – Pm5d – 2.0 cM – Xgwm577-7B – 1.0 cM – Xwmc581-7B
   {10542}.
pm6.  i: Eight Prins derivatives {10576}.
  ma:  RFLP marker Xbcd135-2B was converted to STS markers NAU/STSBCD135-1 and
            NAU/STSBCD135-2, which showed linkage of 0.8 cM with Pm6 {10576}.
pm23.  Deleted, see Pm4c.
pm36.  bin: 5BL6-0.29-0.76 {10356}.
  ma: Delete the present entry and replace with:
   Xcfd7-5B – 10.7 cM – Pm36 – 0.8 cM – EST BJ261636 – 8.9 cM – Xwmc75-5D
   {10356}.
pm38.  v: Saar Pm5a Pm39 {10481}.
  c: See Lr34. 
This gene is identical to Yr18, Lr34, and Ltn and confers stem rust resistance in some genetic backgrounds. 
pm39.  Change v: to v2: and insert ‘Pm5a’ in front of ‘Pm38’
pm40 {10539}. Derived from Th. intermedium {10539}. 7BS {10539}.
  v: GRY19 {10539}. 
  ma: Mapped relative to several SSR markers {10539}.
pm41 {10551}. Derived from T. turgidum subsp. dicoccoides. 3BL {10551}.
  v: XXX = ‘87-1*4//Langdon/IW2’ {10551}.
  tv: ‘Langdon/IW2 Seln. XXX’ {10551}; T. turgidum subsp. dicoccoides IW2 {10551}.
  ma: BE489472 – 0.8 cM – Pm41 – 1.9 cM – Xwmc687-3B {10551}.
Pm41 and associated marker alleles showed strongly distorted inheritance with reduced frequencies relative to Langdon 
alleles {10551}.
pm42 {10559}. Derived from T. turgidum subsp. dicoccoides. Recessive.
 2BS {10559}. bin:   0.75-0.84.
  v: P63 = Yanda 1817/G303-1M//3*Jing 411 {10559}.
  tv: T. turgidum subsp. dicoccoides G303-1M {10559}.
  ma: BF146221 – 0.9 cM – Pm42 – Xgwm148-2B {10559}.
pm43 {10560}. Derived from Th. intermedium.   2DL {10560}.
  v: Line CH5025 = ‘76216-96/TAI7045//2*Jing 411’ {10560}; Partial amphiploid 
   TAI7045 {10560}.
  al: Th. intermedium Z1141 {10560}.
  ma: Xwmc41-2D – 2.3 cM – Pm43 – 4.2 cM – Xbarc11-2D {10560}.

81.3. Temporarily designated genes for resistance to Blumeria graminis
pmlK906. After ‘recessive’ correct second reference to {10477}.
mlIw72 {0908}. 7AL {0908}. bin:  FL 0.86 {0908}.
  tv: T. turgidum subsp. dicoccoides IW72 {0908}.
  ma: Xmag1759-7A – 8.2 cM – MlIw72 – 3.3 cM – Xmag2185-7A – 1.6 cM – Xgwm344-7A
   {0908}.
pmYm66 {10619}. 2AL {10619}. v:   Yumai 66 {10619}.
 ma:   XKsum193-2A – 2.4 cM & 3.6 cM – PmYm66 {10619}.
pm2026 [{10604}]. pm2026 {10604}. Recessive {10604}. 5AmL {10604}.
  bin: 5AL17 – 0.78-1.00 {10604}. 
  dv: T. monococcum subsp. monococcum TA2026 {10604}.
  ma: Xcfd39-5A – 1.8 cM – Xcfd1493-5A/Xmg2170-5A – 0.9 cM – Pm2026 – 2.5 cM –
    Xgwm126-5A {10604}.

81.4. QTL for resistance to Blumeria graminis
‘Avocet R (S) / Saar (R)’ F6 RILs:  QTL located on chromosomes 1BL (close to Xwmc44-1B) (Pm39), 7DS (Xgwm1220-
7D) (Pm38), and 4BL (XwPt-6209) (resistance allele from Avocet R {10481}. 
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86. Reaction to Fusarium graminearum
86.1. Disease: Fusarium head blight, Fusarium head scab, scab 
Fhb3. Change 7D to 7DS.
 ma: Three PCR markers, Be586744-STS, BE404728-STS, and BE586111-STS, were developed 
  {10529}.
Following the entries ‘Wuhan-1 / Maringa’ in QTL section and under Resistance to Don Accumulation insert:
(corrected to ‘Wuhan / Nyubai’ {10623}).’

Field resistance
After the present entry insert the following:
‘G16-92 (R) / Hussar (S)’:  Two QTL for resistance to F. culmorum were identified on chromosomes 1A (resistance from 
Hussar) (R2 = 0.01) and 2B (resistance from G16-92) (R2 = 0.14) {10588}.

Under ‘Nanda 2419 (S) / Wangshuiba (R)’ and immediately above ‘Wanshuibai / Seri 82’ add the following:
Type IV resistance (proportion of Fusarium-damaged kernels) was attributed to five QTL, four from Wangshuibai.  Those 
with the largest effects included QFdk.nau-2B (from Nanda 2419), QFdk.nau-3B, and QFdk.nau-4B {10577} with each 
accounting for more than 20% of the phenotypic variation.

‘Pelikan (S) / G93010’ (= ‘Bussard / Ning 8026’) (R).  Qfhs.Ifl-7BS/5BL and Qfhs.Ifl-6BS (probably Fhb2) from Ning 
8026 reduced disease severity by 30% and 24%, respectively, and by 46% when combined {10594}.  Other resistance 
genes were located on chromosomes 1AS (Qfhs.Ifl-1AS from Pelikan) and 2AL and 7AL (from Ning 8026) {10594}.

‘Spark (MR) / Rialto (S)’ DH population:  Of nine QTL identified across all environments, seven alleles for resistance 
came from Spark and two from Rialto.  The largest effect on Type-1 resistance (Xfhs.jic-4D.2) was associated with the 
Rht-D1b allele in Rialto, which made lines more susceptible.  Other QTL occurred on chromosomes 1B (T1B·1R), 4D 
(Qfhs.jic-4D.2), 2A, 3A (each, two QTL), 5A, and 7A.  Xfhs.jic-4d.2 had little effect on Type-2 resistance {10603}.
Add at end of section:  
Associations between response to FHB caused by F. culmorum and the semidwarfing locus Rht-D1 in crosses ‘Apache / 
Biscay’, ‘Romanus / Pirat’, and ‘History / Rubens’ (Biscay, Pirat, and Rubens carry Rht-D1b) were reported in {10574}. 
Genotypes with the semidwarf alleles tended to be more susceptible.

A review of 52 mapping studies is provided in {10593}.

Seedling resistance to Fusarium graminearum (FSB)
A QTL for FSB resistance in the ‘Wuhan / Nyubai’ population was associated with the Qwmc75-5B locus, R2 = 0.138.  
The relationship of this resistance to crown rot resistance is unknown {10624} (see Reaction to F. pseudograminearum).

Tetraploid wheat
‘Langdon / Langdon (DIC-2A)’ RICL population:  Increased susceptibility of the T. turgidum subsp. dicoccoides Israel 
A substitution line relative to Langdon was mapped to a 22-cM interval spanned by Xgwm558-2A and Xgwm445-2A 
{10613}.

88. Reaction to magnaporthe grisea (Herbert) Barr
List following the note:
rmg4 {10639}. 4A {10639}. v: Norin 4 {10639}; Norin 26 {10639}; Norin 29 {10639}; P168 {10639}; 
    Shin-chunaga {10639}; T. aestivum subsp. compactum No. 24 {10639}.
Confers resistance to Digitaria isolate Dig41 at 26°C {10639}.
mg5 {10639}. 6D {10639}. s: CS (Red Egyptian 6D) {10639}
   v: Red Egyptain {10639}.
Confers resistance to Digitaria isolate Dig41 at 26°C {10639}.

91. Reaction to mycosphaerella graminicola (Fuckel) Schroeter
stb3.  After the existing chromosome location, add: 
According to {10556} this location is not correct.  7AS {10556}. 
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92. Reaction to phaeosphaeria nodorum (E. Muller) Hedjaroude (anamorph: stagonospora nodorum (Berk.) Cas-
tellani & E.G. Germano).
92.1. Genes for resistance
QTL:
Add at the end of the section:
‘HRWSN125 (R) / WAWHT2074 (S)’:  Constant detection of QSnl.daw-2DL for flag leaf resistance and QSng.daw-4BL 
for glume resistance over two years {10584}.

Tetraploid wheat
‘Langdon / Langdon’ (T. turgidum subsp. dicoccoides Israel-A 5B):  QSnb.ndsu-5B located 8.3 cM proximal to tsn1 for 
tan spot resistance; R2 = 0.38 {10597}.

92.2. Sensitivity to SNB toxins
Australian cultivars with Tsn1 and tsn1 are listed in {10540}.

94. Reaction to puccinia graminis
sr2  v2: HD2009 Sr30 {10632}.
 sr8b. tv2: Arrivato Sr9e Sr13 {10607}.
  ma: Sr8b – 4.6 cM – Xgwm334-6A {10607}.
 sr9e. tv2: Arrivato Sr8b Sr13 {10607}.
  ma: Xgwm191-2B – 5.5 cM – Sr9e – 0.7 cM – Xgwm47-2B {10607}. 
sr13.  v2: Machete Sr2 {10607}.  tv2:  Arrivato Sr8b Sr9e {10607}.
  ma: Xwmc59-6A – 5.7 cM – Sr13 {10607}. 
sr17. 7BL {, 10565}. v: Forno (10511, 10565}.   
  ma: Xwmc273-7B – 15.3 cM – Sr17 {10565}.
sr30.  v2:   HD2009 Sr2 {10632}.
sr36  v: Others, add reference 10609, i.e., {572, 10609}.   
  ma: Xgm429-2B – 0.8 cM – Sr36/Xstm773-2-2B/Xgwm31-2B/Xwmc477-2B {10609};
   Xgwm319-2B – 0.9 cM – Sr36/Xstm773-2-2B/Xwmc477-2B {10609}.
sr47 {10549}. Derived from Ae. speltoides.  2B = T2BL-2SL·2SS {10549}.
  tv: DAS15 {10549}.  al:  Ae. speltoides PI 369590 {10549}.
sr48 {10564}. SrAn1{10565}.  2AL {10564, 10565}.
  bin: 2AL1-0.85-1.00 {10564}.  v:  Arina {10511, 10564, 10565}.  
  ma: Yr1 – 16.5 cM – Sr48 {10564}.  Sr48 is considerably distal to the most distal of 
   published markers, all of which are proximal to Yr1.

Add at end of section:
QTL:
‘Arina / Forno’:  Qsr.sun-5BL {10565}; resistance contributed by Arina, associated with Xglk356-5B, R2 = 11-12% 
{10565}.  Qsr.sun-7DS {10565}; resistance contributed by Forno, associated with markers XcsLV34 and Xswm10 diag-
nostic for Lr34/Yr18 {0828}.

‘HD2009 / WL711’ RILs:  Three of several QTL gave consistent effects across environments, i.e., QSr.sun-3BS, R2 = 
0.09-0.15, probably Sr2, QSr.sun-5DL; R2 = 0.2-0.44, probably Sr30; and QSr.sun-7A, R2 = 0.07-0.13, nearest marker 
wPT-4515 {10632}.

95. Reaction to puccinia striiformis
95.1. Designated genes for resistance to stripe rust
Yr1.  bin: 2AL1-0.85-1.00 {10564}.
  ma: Xfba-2A – 1.3 cM – Xstm673acag – 1.1 cM – Yr1 {10564}.
Yr9.   At the end of section add:  
Stripe rust resistant wheat–S. africanum derivatives G17 (substitution line with 1Ra), L9-15 (T1BL·1RSa) and L2-20 
(putative cryptic translocation) are reported in {10596}.
Yr17.  v: Apache {10554}; Bill {10554}; Caphorn {10554}; Clever {10554}; Clarus {10554};
   Corsaire {10554}; Rapsodia {10554}; To Renan add reference, that is {0044,10554};
   Rheia {10554}.
Yr18.  v2: Saar Yr29 {10481}.
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Yr26. , 1BL {10544}. Bin: C-1BL6-0.32 {10544}.
  v: Nannong 9918 {10544}; Nei 2938 {10544}; Nei 4221{10544}; Neimai 9 {10544}.
  ma: Xgwm11/18-1B – 1.1 cM – Xwe171/202/210-1B – 0.4 cM – Xwe177/201-1B – 0.3 cM
   – Xwe173-1B – 1.4 cM – Yr26 – 6.7 cM – Xbarc181-1BL – 3.0 cM – Xwmc419-1BL
   {10544}.  According to {10544} the markers most closely associated with Yr26 are 
   actually located in chromosome 1BL.
Yr27.  v2: Change ‘Attila Lr27’ to ‘Attila Yr27’.
Yr29.  v2: Saar Yr18 {10481}.
Yr33. 7DL {10039}. ma: Linkage with Xgwm111-7D and Xgwm437-7D {10039}.
Yr42 {10537}. Derived from Ae. neglecta. 6A = T6AL-6AenL·6AenS {10537}.
  v: Line 03M119-71A {10537}.
  al: Ae. neglecta 155 {10537}.
Genotype list: Add: 
European wheats {10579}.

95.2. Temporarily designated genes for resistance to stripe rust
YrCn17 {10562}. Derived from S. cereale. 1B, T1BL·1RS {10562}.  
  v: CN12 {10562}; CN17 {10562}; CN18 {10562}.  
  al: S. cereale L155 {10562}.
YrC591 {10606}. 7BL {10606}. v: C591 {10606}; Zhongzhi 1 {10606}. 
  ma: Xcfa20-40-7B – 8.0 cM – YrC591 – 11.7 cM – SC-P35M48 {10606}.
Yrexp1 {10601}. 1BL {10601}. v2: Express YrExp2 {10601}. 
  ma: Xwgp78-1B – 4.2 cM – YrExp1 – 3.4 cM – Xwmc631-1B {10601}.
Yrexp2 {10601}. 5BL {10601}. v2: Express YrExp1 {10601}. 
  ma: Xgwm639-5B – 9.2 cM – Xwgp81-5B – 1 cM – YrExp2 – 0.7 cM – Xwgp82-5B 
  {10601}. 
Based on the presence of the nearest flanking markers, YrExp2 was postulated in Expresso, Blanca Grande, Buck Pronto, 
and ‘Jeff / Pronto’ {10601}.
Yrr212{10562}. Derived from S. cereale. 1B, T1BL·1RS {10562}. 
  v: R185 {10562}; R205 {10562}; R212 {10562}.
  al: S. cereale R212 {10562}.
Yrs2199 {10618}. 2BL {10618}. bin:  2BL0.89-1.00 (10618}.
  v: S2199 {10618}. 
  ma: Xgwm120-3B – 11.0 cM – YrS2199 – 0.7 cM – Xdp269-2B {10618}.

95.3. Stripe rust QTL
Add at end of section:
‘Luke (R) / Aquileja (R)’:  Two QTL for high-temperature adult-plant resistance, QYRlu.cau-2BS.1 (distal, flanked by 
Xwmc154-2B and Xgwm148-2B, R2 = 0.366) and QYrl.cau-2BS.2 (proximal, flanked by Xgwm148-2B and Xbarc167-2B, 
R2 = 0.415) from Luke, and QYraq.cau-2BL (flanked by Xwmc175-2B and Xwmc332-2B, R2 = 0.615) in Aquileja for 
stripe number (10582}.
‘Avocet S / Attila’:  QTL were located on chromosomes 2BS (probably Yr27), 2BL (a race-specific effect) and 7BL 
(XP32/M59 – Xgwm344-7B {10586}.
‘Guardian / Avocet S’:  F3 lines.  One major QTL, QPst.jic-1BL (Xgwm818-1 – Xgwm259-1B , R2 up to 0.45), and two 
minor resistance QTL on chromosomes 2D and 4B originating from Guardian {10589}.  The major QTL was in the 
region of Yr29.
‘Stephens / Michigan Ambe’r:  Two QTL for high temperature APR were located in chromosome 6BS; QYrst.wgp-6BS.1 
located in a 3.9-cM region flanked by Xbarc101-6B and Xbarc136-6B and QYrst.wgp-6BS.2 located in a 17.5-cM region 
flanked by Xgwm132-6B and Xgdm113-6B {10602}. 

96. Reaction to puccinia triticina
96.1. Genes for resistance
lr1.  v: Line 87E03-S2B1 {10561}.  ma:  Co-segegation with RGA567-5 {10561}.
  c: Lr1 is a member of a multigene family (PSR567), has a CC-NBS-LRR structure and
   produces a protein of 1,344 aa, EF567063 {10561}.
lr11.  v2: Ck9803 Lr18 {10595}; FFR 524 Lr18 {10595}; Pioneer 2684 Lr18 {10595}; SS520
   Lr18 {10595}.



271

A n n u a l  W h e a t  N e w s l e t t e r            V o l.  5 5.
lr13.  ma: Xbarc163-2B – 5.1 cM – Lr13 – 8.7 cM – Xstm773b-2B {0329}.
 lr14a. v2: Brambling Lr23 Lr34 {10563}.
 lr14b v: Weebill 1 {10571}.
 lr17a. bin:   2AS-5 {10572}.  v:  TAM 111{10595}; Trego {10572}.
  ma: Xbarc123-2A – 4.8 cM – Xgwm636-2A – 4.0 cM – Lr17a {10571}; Xgwm614-2A –
   0.7 cM – Lr17a – Xwmc407-2A {10572}.
lr18.  v2: Ck9803 Lr11 {10595}; FFR 524 Lr11 {10595}; Pioneer 2684 Lr11 {10595}; SS520
   Lr11 {10595}.
lr19. 7AL. tv: This translocation was transferred to durum wheat and engineered to produce 
   normally inherited secondary recombinants with smaller alien segments, such as 
   R5-2-10, and tertiary recombinants such as R1 {10633}.
  c: A candidate sequence, AG15, with a 1,258 amino-acid sequence and a CC-NBS-LRR
   structure was reported in {10575}. 
lr21. Add note at end of section:
A reconstituted, effective Lr21 allele (designated Lr21-b) was obtained as a rare (1/5,872) recombinant (accession 
TA4446) between Lr21 pseudogenes in common wheat cultivars Fielder and Wichita {10620}.
lr23.  v: IWP94 {10569}.  v2:  Brambling Lr14a Lr34 {10563} 
lr24.  v: Cutter {10595}; Jagalene {10595}; McCormick {10595}; Ogallala {10595}.
lr26.  v: AGS 2000 {10595}; Pioneer 26R61 {10595}.
lr27.  tv: Benimichi C2004 {10585}; Jupare C2001 {10585}.
lr31.  tv: Benimichi C2004 {10585}; Jupare C2001 {10585}.
lr34.  v2: Brambling Lr14a Lr23 {10563}; Saar Lr46 {10481}.
lr34.  i: Add: Arina + Lr34 {10648}; Lalbahudar + Lr34 {10648}.
  v: Ardito {10648}; Kavkaz {10648}; Pegaso {10648}; Penjamo 62 {10648}.
   To the following add reference: Bezostaya {, 10648}; Condor {, 10648}; 
   Fukuko-Komugi {, 10648}.
  v2: Anza = WW15 Lr13 heterogeneous {10648}; Brambling Lr14a Lr23 {10563}; Chris
   Lr13{10648}; Jupateco R Lr17a,Lr27+Lr31 {10648}; Saar Lr46 {10481}.  To the 
   following add reference: Chinese Spring Lr12 {,10648}; Glenlea Lr1 {,10648}; 
   Mentana Lr3b {,10648}.
  c: Lr34 spanning 11,805 bp and producing a 1,401-aa protein belongs to the drug 
   resistance subfamily of ABC reporters {10648}; contained within FJ436983 
   {10648}.
This gene is identical to Yr18, Pm38 and Ltn and confers stem rust resistance in some genetic backgrounds.
lr39.  v: Fuller {10595}; Overley {10595}.
lr42.  v: Fannin {10595}.
lr46.  v2: Saar Lr34 {10481}.
lr48. Correct to 2BS {0329}.  i:  CSP44 / 5*Lal Bahadur {0329}.
  ma: Xgwm429b-2B – 6.1 cM – Lr48 – 7.3 cM – Xbarc7-2B {0329}.
lr49.  Add: ,4BL {0329}.  i:  VL404 / 5*Lal Bahadur Lr34 {0329}.
  ma: Xbarc163-4B – 8.1 cM – Lr49 – 10.1 cM – Xwmc349-4B{0329}. 
lr59. Derived from Ae. peregrina. 1A, probably 1AS.alien centric fusion {10399}.
lr60.  ma: Lr60 – 8.4 cM – Xbarc149-1D/Lr21 {10400}; Lr60 – 13 cM – Lr21 {10400}.
lr61.  ma: Replace present entry with: Lr61 – 2.2 cM – P81/M70269/P87/M75131 – 4.6 cM –
   P87/M76149 – 21.7 cM – Xwmc487-6B {10485}.
lr62 {10537}. Derived from Ae. neglecta. 6A = T6AL-6AenL·6AenS {10537}.
  v: Line 03M119-71A {10537}. al:  Ae. neglecta 155 {10537}. 
lr63 {10550}.         Derived from T. monococcum subsp. monococcum. 3AS {10550}.
  i: RL 6137 = Thatcher*6/TMR5-J14-12-24 {10646,10550}.
  v: TMR5-J14-12-24 {10646}.  dv:  T. monococcum subsp. monococcum {10646}.
  ma: Very closely linked to Xbarc321-3A {10550}.
lr64 {10550}. 6AL {10550}. i: RL 6149 = Thatcher*6/ T. turgidum subsp. dicoccoides 8404 {10550}.
  tv: T. turgidum subsp. dicoccoides 8404 {10550}. 
  ma: Xbarc104-6A – 13.9 cM – Lr64 – 21.9 cM {10550}.
Lr65. Tentatively approved subject to an allelism test and acceptance by a journal.
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lr66 {10591}.  LrS13 {10592}.    3A {10591}.
  v: Line 07M101-127 = Ae. speltoides / 5*CS // 2*CS ph1b mutant /3/ 2* W84-17 /4/
   CSN3AT3B {10591}.
  al: Ae. speltoides Accession 691 {10591}.   
  ma: Most user-friendly marker, SCAR S15-t3 {10591}.
List after LrW2:
LrZH84 {10581}.    1BL {10581}.  v2:  Predgornaia 2 Lr26 {10581}; Zhou 8425B Lr26 {10581}.
  ma:   Xbarc8-1B (cent) – 5.2 cM – LrZh84 – 3.9 cM – Xgwm582-1B {10581}.

96.2. Suppressor of genes for resistance to p. triticina 
96.3. QTL for reaction to p. triticina
Add at end of section: 
‘Avocet S / Attila’:  At least two additive genes for slow rusting (10586}.  In addition to Lr46, there were small effects on 
chromosomes 2BS, 2BL, and 7BL {10586}.
 
Tetraploid wheat
‘Colosseo / Lloyd’:  A major QTL, QLr.ubo-7B.2, for seedling and adult-plant resistance from Colosseo, was located 
between Xgwm344.2-7B and DART 378059, bin 7BL10-0.78-1.00 {10600}.

97. Reaction to pyrenophora tritici repentis (anomorph: drechlera tritici-repentis)
97.1. Insensitivity to tan spot toxin (necrosis)
Add note following the Tsn1 section:
Australian cultivars with tsn1 and Tsn1 are listed in {0903}.

97.3. Resistance to tanspot
tsr1.  Add note:
The gene in Erik was allelic with resistance in a diverse set of genotypes including spelt and durum derivatives {10557}. 
Add after Tsr5:
tsrHar {10590}. 3B {10590}. v:   Dashen {10590}; HAR 604 {10590}; HAR 2562 {10590}.
Effective against races ASC1a (race 1) and DW-16{10590}.
 
QTL:
TA4152-60 (R) / ND495 (S) DH population.  Five QTL for resistance, all from TA4152-60 (10580}, i.e., QTs.fcu-2AS 
and QTs.fcu-5BL.1 conferring resistance to all races used; QTs.fcu-5AL conferring resistance to races 1, 2 and 5; QTs.fcu-
5B.2 conferring resistance to races 1 and 2; and QTs.fcu-4AL conferring resistance to race 3.

‘WH542 (R) / HD29 (S)’ RIL population:  SIM indicated QTL on chromosomes 1B, 3AS, 3BL, 5B, and 6BS, but only 
two were confirmed by CIM, Qts.ksu-3AS flanked by Xbarc45-3A and Xbarc86-3A (LOD 5.4, R2 = 0.23) and Qts.ksu-
5BL (probably Tsn1) flanked by Xgwm499-5B and  Xest.stsbe968-5B (LOD 6.5, R2 = 0.27) {10552} 
 
100. Reaction to Soil-Borne Cereal Mosaic Virus
Vectored to the roots by the fungus, Polymyxa graminis.
sbm1 {change reference to 10614}.
  5DL {10614}.  v:  Tonic {10614}.
  ma: Xbarc110-5D – 14.7 cM – Sbm1 – 2.1 cM – Xwmc765-5D – 3.1 cM – Xbarc144-5D/
   Xwmc443-5D/RRES01-5D {10614}. Caps marker RRESO1 was developed from an 
   AFLP fragment {10614}.
Delete the paragraph beginning with QSbv.ksu-5D because the information duplicates the previous paragraph.  Reference 
{10521} can be deleted because it duplicates {10273}. 
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Genetic linkages
Chromosome 2A 
2AL      

Yr1 – Sr48  16.5 cM {10564}      
Chromosome 2B      
2BS      
Lr48 – Lr13  14.6 cM {0329}
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