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Morphological and Physiological Traits

10. Boron Tolerance
Bo1.  v:   Additional genotypes {10833,10834}. 
  tv:  Kalka {10834}; Linzhi 10834}; Niloticum {10834}; additional genotypes {10834}. 
  ma: Add: Co-dominant PCR marker AWW5L7 co-segregated with Bo1 and was predictive of
      of the responses of 94 Australian wheat genotypes {10833}; Xbarc32-7B – 2.4 cM –
      Xaww5L7 – 1.2 cM – Xbarc182-7B/Bo1 – 1.2 cM – Xpsr680/Xmwg2062-7B {10833};
      Xbarc32-7B – 2.6 cM – Xaww7L7/Bo1 {10834}.  

QTL:  ‘Cranbrook (moderately tolerant) / Halberd (tolerant)’: DH population; QTL for tolerance were identified on chro-
mosomes 7B and 7D {10832}. 
Add note:
For a review of boron tolerance in wheat, see {10835}.

At be beginning of the last paragraph in the exiting file insert:
Boron efficiency

11. Cadmium Uptake
Low uptake is dominant.
Cdu1. Add: ‘; corrected to 5BL {10894}.’ tv:  Fanfarran {10894}. 
 bin:   5BL9 0.76-0.79. 
 ma:   Xfcp2-5B – 12 cM – Cdu1 – 3 cM – ScOPC20 {10894}; ScOPC20/Xrz575-5B/XBG608197 – 
  0.5 cM – Cdu1/XbF293297/XBF474090/Os03g53590 (Xusw15-5B) – 0.2 cM – XBF474164
  {10895}. Cdu1 is close to Vrn-B1 {10895}. 

cdu1. tv:  DT369 {10894}. 

12. Chlorophyll Abnormalities 
   12.2. Chlorina
cn-a1a. i:   ANK-32 {10820}. 
cn-a1d. itv:   ANW5A-7A {10820}. 
Two mutants in diploid wheat are reported in {10820}.  
 ma:   Hexaploid wheat: Xhbg234-7A – 8.0 cM – cn-A1 – 4.3 cM – Xgwm282/Xgwm332-7A
  {10820}; Tetraploid wheat: Xbarc192-7A – 19.5 cM – cn-A1 – 11.4 cM – Xgwm63-7A 
  {10820}; Diploid wheat: Xgwm748-7A – 29.2 cM – cn-A1 – 33.3 cM – Xhbg412-7A {10820}. 

17. Dormancy (Seed) 
   17.1. Vivipary
Insert above the present entry for Vp-A1.
Alleles of Vp-A1 were recognized using STS marker A17-19 {10919}.
Vp-A1{10919}. 3AL {10919}. 
  Vp-a1a {10919}. v:  Nongda 311 {10919}. c:  599 bp {10919}. 
 Higher germination index. 
 
  Vp-a1b {10919}. v:  Wanxianbaimaizi {10919}; Yannong 15 {10919}. 
  c:  596 bp {10919}. 
 Lower germination index. 
 
  Vp-a1c {10919}. v:   Jing 411 {10919}. c:   593 bp {10919}. 
 Higher germination index. 
  
  Vp-a1d {10919}. v:   Xiaoyan 6 {10919}. c:   590 bp {10919}. 
 Lower germination index. 
 



261

A n n u a l  W h e a t  N e w s l e t t e r            V o l.  5 8.
  Vp-a1e {10919}. v:   Zhengzhou 6 {10919}; Bainong 64 {10919}. 
  c:   581 bp {10919}. 
 Higher germination index. 
 
  Vp-a1f {10919}. v: Yumai 34 {10919} c:   545 bp {10919}. 
 Higher germination index. 

Insert after the present Vp-B1 entry. 

Vp-d1 {10919}. 3DL {10919}. AJ400714 {10919}.  
  Vp-d1a {10919}.  v:  81 Chinese wheat cultivars {10919}. 
  c:  5 pairs of primers {10919}. 

   17.2. Pre-harvest sprouting
Continue under the Rio Blanco cross:
Qphs.psweru-3A was fine mapped to a 1.4-cM region flanked by two AFLP markers and was tightly linked to Xbarc57-
3A and seven other AFLP markers {10893}.
 
26. Glaucousness (Waxiness/Glossiness) 
   26.1. Genes for glaucousness 
   26.2. Epistatic inhibitors of glaucousness

 Add to existing comment:
Although maps constructed from three tetraploid crosses suggested that w1 and Iw1DIC could be at different loci, allelism 
of w1, W1, and Iw1DIC = Vir remain unresolved {10815}.  

40. Height 
   40.1. Reduced Height : GA-insensitive
At end of section add:
…….are given in {10404} and those for eastern and central U.S. eastern and central winter wheat cultivars are given in 
{10868}.
 
   40.2. Reduced Height : GA-sensitive
rht8.   
Add at end of section:
Allele sizes for Xgwm261 in U.S. eastern and central wheat winter cultivars are given in {10868}.  

rht14.  To the note add ‘,10818’ to the reference.

rht16.  To the note add ‘,10818’ to the reference.

rht18.  To the note add ‘,10818’ to the reference.

rht22 {10857}. 7AS {10857}. tv:   Aiganfanmai {10857}. 
   ma:  Xgwm471-7A – 29.5 cM – Rht22 – 20.1 cM – Xgwm350-7A {10857}. 

46. Leaf Tip Necrosis
ltn.   c:  Putative ABC transporter {10862}. 

48. Male Sterility 
   48.1. Chromosomal
ms1376 {10814}. Sterility is dominant.  v:  TR1376A {10814}. 
 
Male fertile counterpart: TR1376B {10814}.
Ms1376 was discovered among progenies of a transgenic family of Xinong 1376 containing the leaf senescence-inhibit-
ing gene PSAG12-IPT {10814}.  



262

A n n u a l  W h e a t  N e w s l e t t e r            V o l.  5 8.
54. Nuclear-Cytoplasmic Compatability Enhancers
scs. Add: scsti {10878}.  ma: Xbcd1449.2-1A – 0.6 cM – scs – 2.3 cM – Xbcd12-1A 
      {10878}.
 
60. Red Grain Colour
Correct and add to the first paragraph: ‘……Himi & Noda {10107} provided evidence that the R genes were wheat 
forms of Myb-type transcription factors (Tamyb10-3A, Tamyb10-3B, and Tamyb10-3D). Genetic evidence is provided in 
{10838}’.  
 
r-a1. v:  Rio Blanco {10839}. 
 ma:   Xwmc559-3A – 16.3 cM – R-A1/Xgwm155-3A – 4.5 cM – Xwmc153-3A {10839}.
  r-a1a. ma:   Based on Tamyb10-A1 sequences this allele in CS lacks the ability to bind DNA due to 
  deletion of the first half of the R2 repeat of the MYB domain {10838}. The R-A1a allele in 
  Norin 17 has a 2.2-bp insertion in the second intron that appears to prevent transcription 
  {10838}. 
  
r-B1. ma:   Xgwm4010-3B – 1.6 cM – R-B1 – 4.6 cM – Xgwm980-3B {10839}. 
  r-B1a. ma: Based on the Tamyb10-B1 sequence this allele in CS has a 19-bp deletion of the CCG repeat 
  region causing a frameshift mutation {10838}. 
  
r-d1. ma: Xgwm2-3D – 15.4 cM – R-D1 – 3.2 cM – Xgwm4306-3D {10839}. 
  r-d1a. ma:   No Tamyb10-D1 sequence was detected in lines with this allele indicating that it may be a 
  deletion {10838}. 

 Add note at the end of this section:
Functional markers based on Tamyb10 sequences are given in {10838}.

62. Response to Photoperiod
The following sections are updated on the listing in the 2009 supplement.
ppd-a1.
  ppd-a1a {10612}.   tv: GS100, Kofa (1,027-bp deletion in the promoter) {10612}; GS105, Svevo
    (1,117-bp deletion in the promoter) {10612}. A survey of Ppd-A1 alleles is 
    reported in {10915}. 
GS100 and GS105 had different deletions relative to GS101 and GS104, respectively, and both were consistently a few 
days earlier flowering than their near-isogenic counterparts with Ppd-A1b {10612}. 

ppd-B1.
  ppd-B1a {0063}. [Ppd2 {1566}]. 2BS {1566,1268,1269}. 
 i:  H(C) = Haruhikari*5 / Fukuwasekomugi {10611}. H(D) = Haruhikari 5*/ Fukuwasekomugi
     Ppd-D1a {10611}. 
 s:  Cappelle-Desprez*/CS 2B {0058}. 
 v:  CS {1268}; Spica {557}; Timstein {1269}.  
 v2: Sharbati Sonora Ppd-A1a {887}. Fukuwasekomugi Ppd-D1a {10611}. 
 c:  Varieties with the photoperiod insensitive allele have more than one Ppd-B1 copy per chromo-
      some 2B: two copies in Récital, three copies in Sonora 64, Timstein and C591, and four copies in 
      Chinese Spring {10881}.  
  
  ppd-B1b [{10611}],{10881}. 
 v:  Cappelle-Desprez {10881}; Cheyenne {10881}; Norstar {10881}; Renan {10881}; Paragon 
      {10881}; Beaver {10881}. 
 v2: Haruhikari Ppd-D1b [{10611}]. 
 c:   Varieties with the photoperiod sensitive allele have a single Ppd-B1 copy per chromosome 2B 
      {10881}.
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63. Response to Salinity
   63.3. Sodium exclusion
Add after Nax1 and Nax2:
QTL for Na+ exclusion and seedling biomass under salt stress were detected in the cross ‘Berkut / Krichauff’ on chromo-
somes 2A (Nax1 region) and 6A (cfd080-barc171-6A) {10917}.

65. Response to Vernalization
Vrn-a1. 
Vrn-a1. ma:  Xgwm271-5A – 6.5 cM – Vrn-A1 – 12.6 cM – Xbarc232-5A {10880}. 

 Insert heading:
Dominant spring habit alleles at the Vrn-A1 locus
As currently listed based on the 2010 Supplement and earlier lists: 

Recessive winter habit alleles at the Vrn-A1 locus

  vrn-a1. Copy number variation for vrn-A1 was detected in IL369 (two copies) {10202}, Malacca (two 
 copies) and Hereward (three copies). Higher copy number was associated with later flowering 
 or with increasing requirement for vernalization (i.e., longer exposure to cold is needed to achieve 
 full vernalization) {10881}. 
  vrn-a1a [{10198}]. vrn-A1a {10198}. v:   Claire {10880}; Triple Dirk C {10880}. 
     v2:  Chinese Spring Vrn-D1a {10880}. 
     c:   GenBank AY616455 {10198}. 
  
  vrn-a1b {10881}.     v:   IL369 {10202}; Malacca {10881}. 
     c: GenBank JF965396 {10881}. 
This allele has two copies of the gene, possibly arranged in tandem although the physical structure is unknown. Both 
copies are distinguished from Chinese Spring vrn-A1a by a SNP in exon 7 (T in Malacca, C in Chinese Spring). One 
copy also has a SNP in exon 4 (T in Malacca, C in Chinese Spring). Sequenced cDNAs from Malacca show that both 
copies are expressed {10881}. 
  
  vrn-a1c {10881}.     v:   Hereward {10881}. 
     c: GenBank JF965397 {10881}. 
  
A comparison of Claire (vrn-A1a), Malacca {vrn-A1b}, and Hereward (vrn-A1c} indicated that increasing gene copy 
number is associated with lateness{10881}. 
Two winter alleles were identified based on an SNP in exon 4 {10656}: 
  vrn-a1v {10916}.     v:   Don Ernesto INTA {10916}; Jagger {10916}; Norin 61 
      {10916}; Opal {10916}. 
  vrn-a1w {10916}.     v:   Bezostaya {10916}; Bavicora M 92 {10916}; Kavkaz 
      {10916}; Gennson 81 {10916}; Seri M 82 {10916}; Wichita 
      {10916}. 

Vrn-B1.     ma:  Tsn1 – 14.8 cM – Vrn-B1 – 0.7 cM – Xwmc75-5B {10880}. 
  Vrn-B1c {10880}.     tv:   T. turgidum subsp. carthlicum PI 94749 {10880}. 
     c:   GenBank JN817430, contains a 5,463 retrotransposon 
      insertion in the 5’ UTR region {10880}. 
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Proteins

80. Proteins 
   80.2. Enzymes 
      80.2.33. Phytoene synthase

psy-a1.  
 psy-a1t {10920}. v:   WAWHT2074 {10920}. 
  ma: Xgwm344-7A – 3.9 cM – Psy-A1t – 9.9 cM – Xcfa2257a-7A {10920}.  
  c:   HM006895 {10920}.  
Associated with a higher flour b* value.  

      80.2.38. Flavone 3-hydroxylase (EC 1.14.11.9) 
F3h-a1 {10823}. 2AL {10823}. v:   CS {10823}. 
   ma: Xgwm1067-2A – 2.1 cM – F3h-A1 – 11.4 cM – Xgwm1070-2A {10823}. 
  
F3h-B1 {10823}. 2BL {10823}. v: CS {10823}. 
   ma: F3H-B1/Xgwm1067-B1 – 11.4 cM – Xgwm1070 {10823}. 
  
F3h-d1 {10823}. 2DL {10823}. v:   CS {10823}. 
   ma: Xgwm877-2D – 1.8 cM – F3h-d1/Xgwm1264-2D – 22.7 cM – Xgwm301-2D
    {10823}.  
  
F3h-B2 {10823}. 2AL {10823}. v:   CS {10823}. 
   ma: Xgwm1070-2B – 30.1 cM – F3h-B2 {10823}. Located in the terminal region 
    near Xgwm1027-2B {10823}. 

      80.2.39. Zeta-carotene desaturase 
Zds-a1 {10905}. 2A {10905}. tv:   Langdon {10905} 
  
Zds-B1 {10905. 2B {10905}. tv:   Langdon {10905}. 
  
Zds-d1 {10906}. 2DL {10906}. v:   CS {10906}.  
  Zds-d1a {10906}.  TaZDS-D1a 10906}. 
   v:   CA9632 {10906}. Many Chinese wheat and 80 CIMMYT lines {10906}. 
  Zds-d1b {10906}.  TaZDS-D1b {10906}. 
   v:   Ning 99415-8 {10906}; Zhengzhou 9023 {10906}; Zhongyou 9507 {10906};
    Zhoumai 13 {10906}. 
Cv. Zhongyou 9507 has lower yellow flour pigment content, preferred for Chinese steamed bread and dry Chinese noo-
dles. A QTL in the Zds-D1a region explained 18.4% of the variation in yellow pigment content in ‘Zhongyou 9507 / CA 
9632’ {10906}.

      80.2.40. Carotenoid beta-hydroxylase (non-heme di-iron type)

HYD are non-heme di-iron b-hydroxilases that act primarily on b-carotene
Hyd-a1 {10913}. 2AL {10913}. tv:   Kronos {10913}. 
   v:   UC1041 {10913}. 
 
Hyd-B1 {10913}. 2BL {10913}. tv:   Kronos {10913}. 
   v:   UC1041 {10913}. 
 
Hyd-d1 {10913}. 2DL {10913}. tv:   Kronos {10913}. 
   v:   UC1041 {10913}. 
 
Hyd-a2 {10913}. 5AL {10913}. tv:   Kronos {10913}. 
   v:   UC1041 {10913}. 
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Hyd-B2 {10913}. 4BL {10913}. tv:   Kronos {10913}. 
   v:   UC1041 {10913}. 
 
Hyd-d2 {10913}. 4DL {10913}. tv:   Kronos {10913}. 
   v:   UC1041 {10913}. 
 
   80.3. Endosperm storage proteins 
      80.3.1. Glutenins
           80.3.1.3. glu-3

glu-a3.
Due to an error made in an earlier update, add:
glu-a3ax [{10116}]. 6.1 {10116}.  tv:  Buck Cristal {10116}. 
The designation of this protein (subunit 6.1) as an allele of Glu-A3 was deduced from its electrophoretic mobility and 
awaits confirmation through mapping studies. 

glu-B3.
Due to an error made in an earlier update, delete:
glu-B3z [{10116}]. 6.1 {10116}. tv:  Buck Cristal {10116}. 

      80.3.3. Other endosperm storage proteins 
      80.5.8. Puroindolines and grain softness protein 
After the second last paragraph of notes starting ‘In T. monococcum the gene order…….’ Add a new paragraph:
The soft kernel trait was transferred to durum {10899}.

      80.5.9 Endosperm-specific wheat basic region leucine zipper (bZIP) factor storage activator
spa-a1 (10908}. 1AL {10909}.  v:  Recital {10909}. 
 
spa-B1 {10908}. 1BL {10909}.  v:  Recital {10908}. 
    ma:  Glu-B1 – 1.3 cM – Spa-B1 {10909}. 
  spa-B1a {10908}.    v:  Chinese Spring {10909}; Recital {10908}; Australian genotypes listed in
         {10908}. 
  spa-B1b {10908}.    v:  Renan {10909}; Australian genotypes listed in {10908}. 
 
spa-d1 {10908}. 1DL {10909}.  v:  Recital {10909}. 

After testing an earlier hypothesis that SPA genes affected wheat quality, analyses conducted by both {10908} and 
{10909} obtained no evidence supporting a significant effect and attributed any variation to the closely linked Glu-B1 
locus.

Pathogenic Disease/Pest Reaction

81. Reaction to Barley Yellow Dwarf Virus 

Bdv3. Add note:
Further translocations lines with Bdv3 are described in {10882}.

82. Reaction to Bipolaris sorokiniana

sb1 {10855}. Partial resistance. 7DS {10855,10856}. 
  i: HUW234Ltn+ {10855}. 
  v: Saar {10856}; Lines with Lr34/Yr18/Pm38/Sr57 – see Reaction to Puccinia triticina, 
   Reaction to Puccinia striiformis, Reaction to Blumeria graminis, Reaction to Puccinia 
                                     graminis, and Leaf tip necrosis. 
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  ma: Pleiotropic or closely linked with Lr34/Yr18/Pm38/Sr57 located between Xgwm1220-
   7DS and Xswm10-7DS (1.0 cM interval) {10856}; see also Reaction to Puccinia
   triticina, Reaction to Puccinia striiformis, Reaction to Puccinia graminis, and 
   Reaction to Blumeria graminis. 
  c:   Putative ABC transporter {10862}. 

83. Reaction to Blumeria graminis DC. 
   83.1. Designated genes for resistance
pm3.
  pm3a. v:   Madrid {10843}; Merker {10843}; Robigus {10843}; Tabasco {10843}. 
 
  pm3b. v:   Enorm {10843}. 
 
  pm3d. v:   Vergas {10843}. 
 
  pm3e. v2:   Cortez Pm5 allele {10843}. 
  ma:   Pm3e – 7.1 cM – Xwmc818-1A {10843}. 
 
  pm3f. v:   Viza {10843}.
 
pm21.  bin:   6VS 0.45-0.58 {10859}. 
  ma:   Potentially useful markers are provided in {10918}.  
  c:   Pm21 is likely the serine/threonine kinase gene Stpk-V {10859}.  
  
pm31.   This gene designation {0301}is not valid; subsequent studies {10918} showed the gene was Pm21.  
  
pm46 {10847}. Partial resistance. 4DL {10847,10678}.  
  bin:   Distal to break point 0.56 FL {10678}.  
  i:   RL6077 = ‘Thatcher*6 / PI 250413’ {10847,10678}.  
  ma:   Pleiotropic or closely linked with Lr67/Yr46/Sr55 and associated with Xgwm165-4D 
   and Xgwm192-4DL {10847,10678}.  
  
pm47 {10912}. Recessive. PmHYLZ {10912}. 7BS {10912}.  
  bin:   7BS-1 c-0.27. v:   Hongyanglazi {10912}.  
  ma:   Xgpw2097-7B – 0.9 cM – Pm47 – 3.6 cM – Xgwm46-7B {10912}.  

   83.2. Suppressors of pm

supm8.  Add comment following the present entry:
Pm8 was suppressed when locus Pm3 is transcribed (including Chinese Spring and Thatcher which have no currently 
detectable Pm3 resistance alleles {10828}.

   83.3. Temporarily designated genes for resistance to Blumeria graminis

pmg16 {10886}. 7AL {10886}. bin:  7AL16 0.86-0.90. 
  tv:   T. turgidum subsp. dicoccoides G18-16 {10886}. 
  ma:   Xgwm1061/Xgwm344-7A – 1.2 cM – PmG16/wPt-1424/wPt6019 – 2.4 cM – 
   wPt-0494/wPt9217/Xwmc809-7A {10886}. 
 
pmHnK54 {10897}. 2AL {10897}. bin:  2AL1 C-0.85. 
  v:   Zheng 9754 {10897}. 
  ma:   Xgwm372-2A – 5 cM – PmHNK54 – 6.0 cM – Xgwm312-2A {10897}. 
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ml3d32 {10892}. 5BL {10892}. bin:  5BL 0.59-0.76. 
  tv:   T. turgidum subsp. dicoccoides I222 {10892}. v:  3D232 {10892}.  
  ma:   Xwmc415-5B – 1.3 cM – Ml3D232 – 3.3 cM – CJ832481 {10892}. Co-segregation 
   with eight EST markers including an NBS-LRR analogue {10892}. 
  
mlaB10 {10873}. 2BL {10873}. bin:  2BL6 0.89-1.00. 
  v:   NC97BGTAB10 PI 604036 {10873}. 
  tv:   T. turgidum subsp. dicoccoides PI 471746 {10873}. 
  ma:   Xwmc445-2B – 7 cM – MlAB10 {10873}. 

New: Reaction to Cephalosporium gramineum
 Disease: Cephalosporium stripe
QTL:
‘Coda (more resistant) / Brundage (less resistant)’: RIL population: seven QTL identified based on whiteheads; three 
from Coda – QCs.orp-2D.1 (nearest marker C, R2 = 0.11), QCs.orp-2B (nearest marker Xwmc453-2B, R2 = 0.08), 
and QCs.orp-5B (nearest marker Xgwm639-5A, R2 = 0.12) and four from Brundage (QCs.orp-2D.2 (nearest marker 
Xbarc206-2D, R2 = 0.04), QCs.orp-48 (nearest marker wpt-3908, R2 = 0.05), QCs.orp-5A.1 (nearest marker wpt-3563, R2 
= 0.08), QCs.orp-5A.2 (nearest marker B1, R2 = 0.05) {10836}.

87. Reaction to Fusarium spp. 
   87.1. Disease: Fusarium head scab, scab

Fhb4 {10884}. Qfhi.nau-4B {10282}. 4BL {10282,108831}. 
  bin:   4BL5-0.86-1.00. i:   ‘Mianyang 99-323*4/Nanda 2419/Wangshibai’ 
     {10885}.  
  v2:   Wangshuibai Fhb5{10884}.  
  ma:   Located in a 1.7-cM segment flanked by Xhbg226-4B and Xgwm149/Xmag4580-4B
   {10883}. 
Although plants with Fhb4 were taller than the recurrent parent, the height difference was not associated with the Rht-B1 
locus {10885}. 
 
Fhb5 {10896}. Qfhi.nau-5A {10282}. 5AS {10896}. 
  bin:   C-5AS3 0.75. i:   Mianyang 99-323 and PH691 backcross derivatives 
     selected for Qfhi.nau-5A {10896}. 
  v2:   Wangshuibai Fhb4 {10896}. 
  ma:   Mapped to a 0.3-cM interval between Xbarc117/Xbarc358/gwm293/Xgwm304-5A and 
   Xgwm415-5A {10896}. 

‘Ernie (I) / MO 94-317 (S)’: RIL population: three QTL on chromosomes 3BSc, 4BL, and 5AS accounted for 31 and 
42% of the total phenotypic variances for DON and Fusarium damaged kernels (FDK), respectively. A minor QTL (R2 = 
0.04) for FDK was on chromosome 2B {10831}.
 Add at end of this section:
Six of nine NIL pairs made by MAS for Xgwm0181-3B earlier located near a FCR QTL on 3BL.

‘Grandin (S) / PI 277012 (I)’: DH population: Two QTL, Qfhb.rwg-5A.1 on 5AS (R2 = 0.06-0.2) and Qfhb.rwg-5A.2 on 
5AL (R2 = 0.12–0.20) conferred type I and II resistance and reduced DON content {0147}. The new QTL on 5AL was 
closely but not completely linked with gene q, which is present in PI 277012 {10860}.

‘Nanda 2419 / Wangshuibai’: Above Type IV resistance add:
Backcross-derived NILs with Qfh.nau-2B, Qfhs.nau-3B, Qfhi.nau-4B (syn. Fhb4), and Qfhi.nau-5A were developed with 
Mianyang 99-323 as the recurrent parent {10884}.

‘Wheaton (I) / Haiyanzhong’: RIL population: Four QTL, Qfhb.uhgl-7D (syn. Qhb.hyz-7D), nearest marker Xwmc121-
7D, R2 = 0.16–0.20), Qfhb.uhgl-6B.1 (Qhb.hyz-6B.1), R2 = 0.4), Qfhb.uhgl.6B.2 (Qhb.hyz-6B.2), R2 = 0.07), and  QFhb.
uhgl-5A (Qhb.hyz-5A), R2 = 0.04–0.07) were from Haiyanzhong, and QFhb.uhgl-1A (QFhb.ughl-1A), R2 = 0.05) was 
from Wheaton {10837}.
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To the paragraph beginning: In a reciprocal backcross of Chris………...{10398}’ add: Further study of the 3A, 6A, and 
4D reciprocal substitution lines indicated that chromosome 3A of Frontana had the largest effect on incidence, severity, 
spread, and kernel damage, 4D less so and 6A possibly not at all (10900}.
 
  87.2. Disease: Crown rot caused by Fusarium pseudograminearum, F. culmorum, and other Fusarium species

‘2-49 / W21MMT70’: DH lines: Three QTL for seedling resistance, viz. QCr.usq-1D.1, and a weaker QTL on chromo-
some 7A from 2-49 and QCr.usq-3B.1 (R2 = 0.41) from W22MMT70 {10883}.

 Following the entry ‘Lang (S) / CSCR6’ add:
Six of nine NIL pairs made by MAS for Xgwm01081-3B earlier located near the 3BL QTL {10703} in CSCR6 showed 
significant differences (P<0.01) in crown rot response {10891}.

‘Sunco / 2-49’: DH population: Three QTl for seedling resistance, viz. QCr.usq-1D.1 and QCr.usq.4B.1 (R2 = 0.19) from 
2-49 and QCr.usq-2B.1I from Sunco {10883}.
 
90. Reaction to mayetiola destructor (Say) (phytophaga destructor) (Say)

H26.  bin:   3DL3-0.81-1.00.   
 Add note:  
H26 is very close to H32 {10846}.  
  
H32.  bin:   3DL3-0.81-1.00.   
  ma:   Xrwgs10-3D – 0.5 cM – H32/Xrwgs11-3D – 0.5 cM – Xrwgs12-3D {10846}.  
 Add note:  
H32 is very close to H26 {10846}.  

 Add to temporary symbols:
HNC09MDD14 [Hf-NC09MDD14 {10844}]. 6DS {10843}.   
  v:   NC09MDD14 PI 656395 {10843}.   
  dv:   Ae. tauschii TA2492 and/or TA2377 {10843}.  
  ma:   Xgdm36-6D – 1.5 cM – HNC09MDD14/Xcfd123-6D {10843}. HNC09MDD12 could
   be allelic to, but is different from, H13 {10843}.  

91. Reaction to meloidogyne spp. 
92. Reaction to mycosphaerella graminicola (Fuckel) Schroeter

stb9 {10027}. Culture IPO89011. 2BL {10027}. 
  v:   Courtot {10027}; Tonic {10027}. 
  ma:   Xfbb226-2B – 3 cM – Stb9 – 9 cM – XksuF1b-2B {10027}. 
stb16 [{10879}]. Seedling and adult-plant resistance. Stb16q {10879}. 
  3DL {10879}. v2: Synthetic W-7976 Stb17 {10879}. 
  ma:   Associated with Xgwm494-3D and mapped as a QTL, R2 = 0.4–0.7 in seedling tests 
   and 0.28–0.31 in mature plants {10879}. 
 
stb17 {10879}. Adult plant resistance. 5AL {10879}. 
  v2:   Synthetic W-7976 Stb16 {10879}. 
  ma:   Associated with Xhbg247-5A and mapped as a QTL, R2 = 0.12–0.32 {10879}.  
 
stb18 {10827}. Confers resistance to IPO0323, IPO98022, IPO98046 {10827}. 
 6DS {10827}. v2:   Balance Stb6 Stb11 {10827}. 
  ma:   Mapped as a QTL located in a 8.8-cM region spanned by Xgpw3087-6D and 
   Xgpw5176-6D {10827}.  
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QTL:  Add at end of section:
‘Apache / Balance’: Analyses with a panel of M. graminicola cultures identified QTL on chromosomes 1BS (Apache, 
considered to be Stb11), 3AS (Balance, considered to be Stb6), 6DS (Balance, named as Stb18), 7DS (Apache, consid-
ered to be Stb4), and 7DL (Apache) {10827}.

‘Florett / Biscay (S)’: RIL population: two QTL for APR located on chromosomes 3B and 6D {10901}.

‘Tuareg / Biscay (S)’: RIL population: two QTL for APR were located on chromosomes 4B and 6B {10901}.
 
93. Reaction to phaeosphaeria nodorum (E. Muller) Hedjaroude (anamorph: stagonospora nodorum (Berk.) Cas-
tellani & E.G. Germano). 
   93.1. Genes for resistance
QTL
‘Salamouni / Katepwa’: RIL population: Two QTL, QSnb.fcu-1A (Snn4) (R2 = 0.24) and QSnb.fcu-7A (R2 = 0.16) were 
associated with SNB response to isolate Sn99CH 1A7a {10867}.
 
   93.2. Sensitivity to SNB toxin
snn4. Add: v:  Salamouni {10867}.
snn4. Add: v:  Katepwa {10867}. 

95. Reaction to puccinia graminis Pers.

sr6.  ma:   Add: Xgwm102-2D – 0.9 cM – Xgpw94049-2D – 5.6 cM – Sr6 – 1.5 cM – Xwmc453/
   Xcfd43-2D {10870}. 
 
sr21.  dv:   After the Einkorn entry insert: Dv92 Sr35; G2919 Sr35 {10876}. 
 
sr22.  bin:   Add: 7AL-13 0.83-0.89 {10869}. 
  ma:   Add: Recombined lines with shortened introgressions from diploid wheat are reported 
  in {10869}; the shortest was U5616020-154. 
 
sr24.  v:   Ernest {10845}; Keene {10845}. 
  ma:   Xbarc71-3Ag was considered a better marker for Sr24 than STS Sr24#12 {10845}. 
 1BL. tr:   Add: Millenium {10845}. 
 
sr30.  ma:   Xcfd12-5D – 9.0 cM – Sr30 – 16.6 cM – Xgwm292-5D {10858}. 
 Add note: 
According to {10858} Webster RL6201 carries a second gene SrW that confers resistance to the race Ug99 group. 
 
sr31.  ma:   Xscm09-1R208 {10845}. 
 
sr35.  bin:   3AL8 0.85-1.00. i:   ‘Marquis*5 / G2919’ {10876}. 
  dv:   DV92 Sr21 {10876}; G2919 Sr21 {10876}. 
  ma:   Add: Mapped in diploid wheat within to a 2.2–3.1-cM region between Xbf483299 and 
   XCJ656351 and corresponding to a 174-kb region in Brachypodium {10876}. 
 
sr36.  ma:   Xgwm429-2B – 0.8 cM – Sr36/Xstm773-2/Xgwm319/Xwmc477-2B {10824};
   Xgwm319-2B – 0.9 cM – Sr36/Xstm773-2/Xwmc477-2B {10824}; of four markers 
   Xwmc477-2B was the best, but it is not a perfect marker {10845}. 
 
sr39.  Add note: 
A Ti2BL·2BS-2SS-2BS translocation (10872} separated from Sr47 in DAS15 could contain Sr39 – see SrAEs7t. 
 
sr40.  ma:   Xwmc661-2B – 6.4 cM – Sr40 – 0.7 cM – Xwmc344-2b  – 2.0 cM – Xwmc477-2B 
   {10825}; Xwmc661-2B – 7.8 cM – Sr40 – 2.5 cM– Xwmc474-2B – 1.0 cM – 
   Xwmc477-2B {10825}. 
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sr47.  Add to chromosome location: ‘, 2BS {10872}’. 
Add note: Further chromosome engineering on DAS15 showed that the alien segment carried two 
  resistance genes. The gene on 2BL was considered to be Sr47 based on low infection type.
  The second gene located in 2BS produced a low infection type similar to Sr39 and was 
  located in a similar position to that gene {10872}. 
  2B = T2BL-2SL-2BL·2BS tv:  RWG 35 {10872}; RWG 36 {10872}. 
  ma:    Located in the interval Xgwm47-2B – Xgpw4165-2B {10872}. 
 
sr48. Update: v:   To be provided. v2: Arina Sr56 {10851}. 
 
sr54 {10816}. 2DL {10816}. v2: Norin 40 Sr42 {10816}. 
 
sr55 {10847}. Adult-plant resistance.  4DL {10847,10678}. 
  bin:   Distal to break point 0.56 FL {10678}. 
  i:   RL6077 = ‘Thatcher*6 / PI 250413’ {10847,10678}. 
  ma:   Pleiotropic or closely linked with Lr67 and Yr46 and associated with Xgwm165-4D
   and Xgwm192-4DL {10847,10678}. 
 
sr56 {10851}. Adult-plant resistance. QSr.Sun-5BL {10565}. 
 5BL {10565,10851}. bin:   5BL16. 
  v:   AF533 {10851}. v2: Arina Sr48 AUS 91457 {0138}. 
  ma:   Xgwm118-5BL – 13.6 cM – wPt9116 – 5.4 cM – Sr56 – 6.9 cM – wPt0484 {10851}. 
In the earlier QTL analysis of an ‘Arina / Forno’ population, QSr.Sun-5BL accounted for 12% of the PVE {10565}. In the 
present study of an ‘Arina / Yitpi’ RIL population stem rust response segregated as a single gene. The response pheno-
type was 40-50 MS–S. 
  
sr57 {10861}. Adult-plant resistance. 7DS {10861}.  
  bin:   7DS4.  
  su:   Lalbahadur (Perula7D) GID 5348503 and GID 5348496 {10861,10862}. 
  v:   Chinese Spring {10861}; Wheats with Pm/Lr34/Yr18, see Reaction to Blumeria 
   granminis, Reaction to Puccinia striiformis, Reaction to Puccinia triticina, Leaf tip 
   necrosis.  
  ma:   See Reaction to Puccinia triticina. 
  c:   Putative ABC transporter {10862}. 
Further evidence for the effects of this gene on stem rust response can be found in {299, 10565,10733,10863,10864,
10865,10866}. 

sraes7t {10872}. 2BS = T2BL·2BS-2SS-2BS {10872}. 
  v:   Line 0797 {10872}. ma:  Sr39#50s {10741,10872}.  
SrAes7t may be identical to Sr39 {10872}. 
 
srWeb {10858}. 2BL {10858}. v2: Webster RL6201 Sr30 {10858}. 
  ma:   Xgwm47-2B – 1.4 cM – SrWeb – 12.5 cM – Xwmc332-2B {10858}. 
 
sr1rsamigo {10845}. 1AS (T1AL·1RS) {389,1624}. 
  v2:   Amigo Sr24 {1464,10845}. 
  ma:   Xscm09-1R224 {10845}. 
This alien segment also carries Pm17 – see Pm17. 

QTL:
‘RL6071 / RL6058’ (R): RIL population: RL6058, a Tc backcross line with Lr34/Sr57 is more resistant than Tc. En-
hancement of resistance in both Kenya and North America was attributed to a QTL in the region wPt5044 – Xgwm-2B in 
chromosome 2BL {10902}.
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96. Reaction to puccinia striiformis Westend. 
   96.1. Designated genes for resistance to stripe rust

Yr5.  ma:   Xwmc175-2B – 1.1 cM – YrSTS-7/8 – 0.3 cM – Yr5 – 0.4 cM – Xbarc349-2B 
   {10826}. 
 
Yr15.  ma:   Xwmc128/Xgwm273/Xgwm582-1B – 0.4 cM – Yr15/Xwgp34/Xgwm413/Xbarc8 
   {10826}. 
 
Yr18.  c:   Putative ABC transporter {10862}. 
 
Yr46. Add note:    
Pleiotrophic or closely linked with Sr55 and Lr67. 

Yr47.
Update the existing entry to the following:
Yr47 {10679}. 5BS {10679}. bin: 5BS5-0.71- 0.81.  
  v:   AUS28183 = V336 {10679}; AUS28187 {10679}.  
  ma:   Xgwm234-5B – 10.9 cM – Lr52 – 4.1 cM – Yr47 – 9.6 cM – Xcfb309-5B {10679}; 
   Xgwm234-5B – 10.2 cM – Lr52 – 3.3 cM – Yr47 – 8.2 cM – Xcfb309-5B {10679}. 
 
Update:
Yr48 {10705}. Adult-plant resistance.  Syn. Qyr.ucw-5AL {10705}. 5AL {10705}. 
  bin:   5AL23 0.87-1.00.  
  v:   UC1110 (S) / PI 610750 RIL 4 = GSTR 13504 & RIL 167 = GSTR 136 {10705}.  
  ma:   Xwmc727-5AL – 3.7 cM – Vrn-A2 – 0.1 cM – Yr48/BE444566-5AL/Xcfa2149-5AL/
   Xgpw2181a-5AL/Xwmc74-5AL/Xwmc410-5AL {10705}. 
PI 610750 = Synthetic 205 (Croc 1 / Ae. tauschii) / Kauz) {10705}.

Yr50 {10849}. Derived from Th. intermedium. 4BL {10849}. 
  v:   CH233 {10849}. ma:  cent….Xbarc1096-4B – 6.9 cM – Yr50 – 7.2 cM – 
        Xbarc-4B {10849}. 
 
Yr51 {10850}. 4AL {10850}. bin:  4AL4-0.80-100. 
  v:   Line 5515 AUS 91456 {10850} v2:  AUS 27858 Gene 2 {10850}. 
  ma:   wPt4487 – 9.8 cM – Yr51 – 4.4 cM – wPt0763 – 7.9 cM – Xgwm160-4B {10850}. 
 
Yr52 {10852}. Adult-plant resistance.  7BL {10852}. 
  bin:   7BL-3 0.86-1.00. v: PI 183527 {10852}; PI 660057 = ‘Avocet S / 
     PI 183527’ F4-41{10853}. 
  ma:   Xbarc182-7B – 1.2 cM – Yr52 – 1.1 cM – Xwgp5258 – 5.7 cM – Xcfa2040-7B 
   {10852}. 
  
Yr53 {10854}. 2BL {10854}. tv:  PI 480148 {10854}. 
  v:   ‘Avocet S / PI 480148’ F5-128{10854}. 
  ma:   Xwmc441-2B – 5.6 cM – Yr53 – 2.7 cM – XLRRrev/NLRRrev350 – 6.5 cM –
   Xwmc149-2B {10853}. Yr53 was estimated to be 35 cM distal to Yr5 based on an F2 
   allelism test, but on an integrated map this distance was about 20 cM. 

   96.2. Temporarily designated genes for resistance to stripe rust

Yras2388 {10822}. dv:   Ae. tauschii AS2388 {10822}. 
  ma:   Xwmc617-4DS – 34.6 cM – YrAS2388 – 1.7 cM – Xwmc285-4DS {10822}. 
 
Yrr61 {10914}. QYr.uga-2AS 10914}. 2AS {10914}. 
  v:   Pioneer 26R61 = PI 612056 {10914}. 
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Yrxy1 {10829}. High temperature resistance. 
  v:   ‘Mingxian 169 / Xiaoyan 54’ F3-4-14 {10829}. 
  v2:   Xiaoyan 54 Yrxy2 {10829}. 
  ma:   Xbarc49-7AS – 15.8 cM – Yrxy1 with closer flanking RGA markers {10829}. 
 
Yrxy2 {10829}. High temperature resistance. 
  v:   ‘Mingxian 169 / Xiaoyan 54’ F3-4-30 {10829}. 
  v2:   Xiaoyan 54 Yrxy1 {10829}. 
  ma:   Xwmc794-2AS – 4.0 cM – Yrxy2 – 6.4 cM – Xbarc5-2AL {10829}. 

   96.3. Stripe rust QTL 
‘Pioneer 26R61 (R) / AGS2000 (S)’: RIL populations: Two QTL, QYr.uga-2AS (R2 = 0.56) flanked by Xbarc124-2A and 
Xgwm359-2A (also named YrR61) and QYr.uga-6AS (R2 = 0.06) {10914}. Minor QTL were also on other chromosomes.

‘UC1110 (MR) / PI 610750 (MR)’: RIL population: Qyr.ucw-3BS ex UC1110, R2 = 0.22, associated with Xgwm522-
3B.1. This marker differs from Xgwm533-3B.2 that is associated with Yr30 {10705}; Qyr.ucw-5AL, R2 = 0.1, ex PI 
61075 – syn. Yr48 {10705}; Qyr.ucw-2BS, R2 = 0.045, ex UC1110, located in the centromeric region near Xwmc474-2BS 
{10705}; and Qyr.ucw-2AS, R2 = 0.023, ex PI 61725, near wPt-5839 (10705}.

‘Stephens I / Platte (S)’: RIL population; 13 QTL were identified across several environments; significant ‘QTL x envi-
ronment’ interactions suggested that plant stage specificity, pathogen genotype and temperature as well as host genotype 
were important in determining rust response {10890}.
 
92.Reaction to puccinia triticina
92.1. Genes for resistance
lr11.  v:   Panola {10830}. v2:  Jamestown Lr18 {10830}. 
 
lr17. 
 lr17a. v:   Santa Fe {10830}. 
 
lr18.  v2:   Jamestown Lr11 {10830}. 
 
lr19.  v:   Dobrynya {10821}; Ekada 6 {10821}; L505 {10821}; Samsar {0108}; 
   Volgouralskaya {10821}. 
  v2:   Kinelskaya Niva Lr23 {10821}. 
 
lr32.  i:   RL6086 = ‘Tc*7 // Rl5713 / Marquis K’ {10874}; BW196 = ‘Katepwa*6 //
   RL5713 / 2*Marquis K’ {10874}. 
  ma:   Xbarc128-3D – 9.1 cM – Lr32 – Xwmc43/Xbarc235-3D {10874}. 
 
lr34.  v:   2174 {10888}. List of U.S. hard wheats in {10888}. Pedigree charts showing the 
   presence of Lr34 in various Canadian wheat classes are given in {10889}. 
  ma:   Further markers for Lr34 and various marker-positive haplotypes that lack leaf rust 
   resistance are described in {10887,10888}. 
  c:   Putative ABC transporter, GenBank FJ436983, in CS {10862}. Further confirmation 
   of the ABC transporter is provided in {10887}. 
 
lr39.  v:   Postrock {10830}. 
 
lr42. Change the current listing to the following: 
 1D {218}. v:   AR93005 {10840}; Fannin {10595}, but not confirmed with markers {10840}. 
  v2:   KS91WGRC11 Lr24 {218,10840}. dv:   TA2450 {218}. 
  ma:   Lr42 – 0.8 cM – Xwmc432-1D – 1.6 cM – Xcfd-D1 {10840}. 
 
lr48. Add: , 2BS {10842}. 
  ma:   Xwmc175-2B – 10.3 cM – Lr48 – 2.5 cM – Xwmc332-2B {10842}. 
   Centromere – 27.5 cM – Lr48 (est.) {10842}. 
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lr52.  v:   Add: AUS28183 = V336 {10679}; AUS18187 {10679}. 
  ma:   Add: Xgwm234-5B – 10.9 cM – Lr52 – 4.1 cM – Yr47 – 9.6 cM – Xcfb309-5B 
   {10679}; Xgwm234-5B – 10.2 cM – Lr52 – 3.3 cM – Yr47 – 8.2 cM – Xcfb309-5B 
   {10679}. 
 
lr58.  ma:   Add: A codominant STS marker Xncw-Lr58-1 was based on the sequence of XksuH16 
   {10819}. 
  
lr63. Under Lr63 change reference 10550 to 10875. 
  ma:   Replace existing text by ‘Xbarc321/Xbarc57-3A – 2.9 cM – Lr63 {10875}.’ 
 
lr65 {10848}. LrAlt {10739}. 2AS {10739,10848}. 
  v:   Selection ARK 0; {10848}; T. aestivum subsp. spelta Altgold Rotkorn 
   {10739,10848}. 
  ma:   Lr65 – 1.8 cM – Xbarc212-2A/Xwmc382-2A – 2 cM – Xgwm636 {10739}; 
   XE41M57-165 – 3 cM – Lr65 – 2 cM – Xbarc124/Xbarc222/Xgwm614-2A {10848}.  
   Lr65 was estimated to be about 10 cM from Lr17 {10848}. 
Some plants of Altgold Rotkorn possess a second gene conferring IT 12C {10848}. 
 
lr67. Correct chromosome location to 4DL {10675}. 
  bin:   C-0.53 {10675}; Distal to 0.56 {10678}. 
  ma:   Replace first sentence with: Xcfd71-4D – 1.5 cM – Lr67 {10675}. 
Lr67 is pleiotropic or closely linked with Sr55 and Yr46. 
 
lr68 {10817}. Adult-plant resistance.  7BL {10817}. 
  v:   Arula 1 CIMMYT GID 1847450 {10817}; Arula 2 CIMMYT GID 1847422 {10817}. 
  v2:   Parula Lr3b Lr34 Lr46 {10817}. 
  ma:   Close linkage with several markers in chromosome arm 7BL and Lr14b in the
   ‘Apav / Arula’ populations. Flanking markers are Xpsy1-1 and Xgwm146-7BL at 0.4 
   and 0.6 cM. Gamma-irradiation induced deletion stocks of Arula 1 that lack LrP but 
   have Lr14b were identified showing that the two genes are located at different closely
   linked loci {10817}. 
 
lr69 {10903}. 3DL {10903}. v:   Toropi-6.3 {10903}. 
 
lr70 {10904}. 5DS {10904}. v:   Yet to be named selection of cross or backcross to Tc 
     {10904}. 
  v2:   KU3198 LrXX {108221}. ma: Lr70 – Xgwm190-5D {10904}. 
LrXX is believed to be a known gene for resistance.  
 
lr71 {10911}. LrARK12c {10910}. 1B centromere region not resolved {10911}. 
  v:   LrARK12c = T. aestivum subsp. spelta Altgold Rotkorn selection {10910}. Common 
   wheat reference line under increase {10911}. 
  ma:   Xgwm11-1B – 3.3 cM – Xgwm18-1B – 1.0 cM – Lr71 – 1.3 cM – Xbarc187-1B – 
   0.5 cM – Xbarc137-1B {10911}. 

lralt.  Delete this section.

98. Reaction to pyrenophora tritici-repentis (anomorph: drechlera tritici-repentis) 
   98.2. Insensitivity to tan spot toxin (chlorosis)

tsc2.  v:   Add: Katepwa (10871}.  bin:  2BS3 0.84-1.00. 
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tsc2.  v:   Salamouni {10871}.  tv:  Altar 84 {10871}. 
  ma:   Xmag681-2B/XTC339813 – 2.7 cM – Tsc/XBE444541 – 0.6 cM – XBE517745 
   {10871}. An XBE444541 EST-STS co-segregating marker for Tsc2 was developed 
   and lines with tsc2 produced a 505-bp fragment, whereas those with Tsc2 produced a 
   340-bp band {10871}. 

QTL
‘Salamouni / Katepwa’: RIL population: variation at the Tsc2 locus explained 54% of the variation in response to race 
DW5 {10871}.

NEW SECTION XX Reaction to sitobion avenae
English grain aphid.
sa1 [{10877}]. RA-1 {10877}. 6AL {10877}. tv:   C273 {10877}. 
  ma:   Xwmc179-6A – 3.37 cM – Sa1 – 4.73 cM – Xwm580-6A {10877}. 

99. Reaction to sitodiplosis mosellana (Gehin)
 Add:
QTL:
‘Reeder I / Conan’: RIL population: QSm.mst-1A, flanked by Xwmc59-1A and Xbarc1022-1A was the most effective and 
constant QTL for reduced larval infection over two years (R2 = 0.17 and 0.34) {10841}. RILs with this QTL in three 
genetic backgrounds had reduced infestations of 42% {10841}.

100. Reaction to schizaphis graminum Rond. (toxoptera graminum Rond.)

gb3.  bin:   7DL3 0.82-1.00. v:   TAM 112 {0194}. 
  tv:   Ae. tauschii PI 268210 {10907}. 
  ma:   At the end of the present entry add:  ….. – 0.8 cM – Xbarc76-7D {10169}.
   H1067J6-R – 0.7 cM – Gb3 – 0.4 cM – H1009B3-F {10907}.
 
107. Reaction to Wheat Streak Mosaic Virus

Wsm2 {10802,10898}. v:   RonL {10898}.  
  ma:   Xgwm389-3B – 30.8 cm – Wsm2 – 45.2 cM – Xgwm566-3B {10898}.  
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